首页> 外文期刊>Journal of statistical computation and simulation >An algorithm for conditional multidimensional parameter identification with asymmetric and correlated losses of under- and overestimations
【24h】

An algorithm for conditional multidimensional parameter identification with asymmetric and correlated losses of under- and overestimations

机译:高估和高估的不对称和相关损失的条件多维参数识别算法

获取原文
获取原文并翻译 | 示例

摘要

Many of today's specialized applicational tasks are obliged to consider the influence of inevitable errors in the identification of parameters appearing in a model. Favourable results can also be achieved through measuring, and then accounting for definite (e.g. current) values of factors which show a significant reaction to the values of those parameters. This paper is dedicated to the problem of the estimation of a vector of parameters, where losses resulting from their under- and overestimation are asymmetric and mutually correlated. The issue is considered from a supplementary conditional aspect, where particular coordinates of conditioning variables may be continuous, discrete, multivalued (in particular binary) or categorized (ordered and unordered). The final result is a ready-to-use algorithm for calculating the value of an estimator, optimal in the sense of minimum expectation of losses using a multidimensional asymmetric quadratic function, for practically any distributions of describing and conditioning variables.
机译:当今许多专门的应用任务都必须考虑不可避免的错误对模型中出现的参数的识别的影响。还可以通过测量然后考虑确定的(例如当前)因子值来获得有利的结果,这些因子对那些参数的值显示出显着的反应。本文致力于解决参数向量的估计问题,由于低估和高估导致的损失不对称且相互关联。从补充条件方面考虑该问题,其中条件变量的特定坐标可以是连续的,离散的,多值的(尤其是二进制的)或分类的(有序的和无序的)。最终结果是一种用于计算估算器值的现成算法,该估算器使用多维不对称二次函数在损失的最小期望意义上最佳,实际上适用于描述和条件变量的任何分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号