首页> 外文期刊>Journal of statistical computation and simulation >A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices
【24h】

A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: a study on its applicability with structured correlation matrices

机译:一种协方差校正,它考虑了相关性估计,以改善广义估计方程的有限样本推论:在结构化相关性矩阵上的适用性研究

获取原文
获取原文并翻译 | 示例

摘要

When generalized estimating equations (GEEs) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.
机译:当广义估计方程(GEE)包含非结构化工作相关矩阵时,由于相关参数的估计,回归参数估计的方差可能会膨胀。在先前的工作中,得出了这种膨胀的近似值,该近似值导致了回归参数估计的协方差矩阵的三明治公式的校正版本。使用此校正进行相关结构选择还可以减少对非结构化工作相关矩阵的过度选择。在本手稿中,我们进行了仿真研究,以证明当GEE并入结构化工作相关矩阵时,回归参数估计值的方差也会增加。相应地,我们展示了三明治公式的修正版本提高推理和相关结构选择的有效性的能力。我们还研究了两种流行的校正对经验夹心协方差估计量中不同偏差来源的相对影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号