首页> 外文期刊>Journal of statistical computation and simulation >Outlier-resistant high-dimensional regression modelling based on distribution-free outlier detection and tuning parameter selection
【24h】

Outlier-resistant high-dimensional regression modelling based on distribution-free outlier detection and tuning parameter selection

机译:基于无分布离群点检测和调整参数选择的抗离群点高维回归建模

获取原文
获取原文并翻译 | 示例

摘要

The L-1-type regularization is a useful tool for high-dimensional regression modelling. Although the L-1-type approaches perform well regression modelling, the methods suffer from outliers, since the L-1-type approaches are based on non-robust methods (e. g. least squares loss function). In order to resolve the drawback, we propose a robust L-1-type regularization method based on distribution-free outlier detection measure. We consider outlier detection in principal component spaces (PCSs) to overcome dimensionality problem of high-dimensional data, and propose a novel cut-off value based on a non-parametric test. By using the distribution-free outlier detection measure, we can effectively detect outliers in PCS without distribution assumption of the Mahalanobis distance. We then propose a robust L-1-type regularization method via a weighted elastic net. The tuning parameter selection is a vital matter in L-1-type regularized regression modelling, since choosing the tuning parameters can be seen as variable selection and model estimation. We derive an information criterion to select the tuning parameters of the proposed robust L-1-type regularization method. Monte Carlo simulations and NCI60 data analysis show that the proposed robust regression modelling strategies effectively perform for high-dimensional regression modelling, even in the presence of outliers.
机译:L-1-型正则化是用于高维回归建模的有用工具。尽管L-1型方法执行良好的回归建模,但是由于L-1型方法基于非稳健方法(例如,最小二乘损失函数),所以该方法具有离群值。为了解决该缺陷,我们提出了一种基于无分布离群值检测方法的鲁棒的L-1型正则化方法。我们考虑在主成分空间(PCS)中进行离群值检测,以克服高维数据的维数问题,并基于非参数检验提出一种新颖的临界值。通过使用无分布离群值检测方法,我们可以有效地检测PCS中的离群值,而无需假设马氏距离的分布。然后,我们通过加权弹性网提出了一种鲁棒的L-1型正则化方法。调整参数的选择对于L-1型正则化回归建模至关重要,因为选择调整参数可以看作变量选择和模型估计。我们导出一个信息准则,以选择所提出的鲁棒L-1型正则化方法的调整参数。蒙特卡洛模拟和NCI60数据分析表明,即使存在异常值,所提出的鲁棒回归建模策略也可以有效地执行高维回归建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号