首页> 外文期刊>Journal of statistical computation and simulation >Local Box-Cox transformation on time-varying parametric models for smoothing estimation of conditional CDF with longitudinal data
【24h】

Local Box-Cox transformation on time-varying parametric models for smoothing estimation of conditional CDF with longitudinal data

机译:时变参数模型上的局部Box-Cox变换,用于使用纵向数据平滑条件CDF的估计

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric estimation and inferences of conditional distribution functions with longitudinal data have important applications in biomedical studies, such as epidemiological studies and longitudinal clinical trials. Estimation approaches without any structural assumptions may lead to inadequate and numerically unstable estimators in practice. We propose in this paper a nonparametric approach based on time-varying parametric models for estimating the conditional distribution functions with a longitudinal sample. Our model assumes that the conditional distribution of the outcome variable at each given time point can be approximated by a parametric model after local Box-Cox transformation. Our estimation is based on a two-step smoothing method, in which we first obtain the raw estimators of the conditional distribution functions at a set of disjoint time points, and then compute the final estimators at any time by smoothing the raw estimators. Applications of our two-step estimation method have been demonstrated through a large epidemiological study of childhood growth and blood pressure. Finite sample properties of our procedures are investigated through a simulation study. Application and simulation results show that smoothing estimation from time-variant parametric models outperforms the existing kernel smoothing estimator by producing narrower pointwise bootstrap confidence band and smaller root mean squared error.
机译:具有纵向数据的条件分布函数的非参数估计和推论在生物医学研究(例如流行病学研究和纵向临床试验)中具有重要的应用。在没有任何结构假设的情况下,估算方法可能会导致实际中估算器的数量不足和数值不稳定。我们在本文中提出了一种基于时变参数模型的非参数方法,用于估计带有纵向样本的条件分布函数。我们的模型假设在每个给定时间点的结果变量的条件分布可以通过局部Box-Cox变换后的参数模型来近似。我们的估算基于两步平滑方法,其中,我们首先在一组不相交的时间点获得条件分布函数的原始估算器,然后在任何时候通过对原始估算器进行平滑来计算最终估算器。我们的两步估算方法的应用已通过对儿童成长和血压的大规模流行病学研究证明。我们通过模拟研究来研究我们程序的有限样本属性。应用和仿真结果表明,时变参数模型的平滑估计通过产生更窄的逐点自举置信带和较小的均方根误差,胜过了现有的内核平滑估计器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号