首页> 外文期刊>Journal of statistical computation and simulation >A model-free feature screening approach based on kernel density estimation
【24h】

A model-free feature screening approach based on kernel density estimation

机译:基于核密度估计的无模型特征筛选方法

获取原文
获取原文并翻译 | 示例

摘要

In this article, a new model-free feature screening method named after probability density (mass) function distance (PDFD) correlation is presented for ultrahigh-dimensional data analysis. We improve the fused-Kolmogorov filter (F-KOL) screening procedure through probability density distribution. The proposed method is also fully nonparametric and can be applied to more general types of predictors and responses, including discrete and continuous random variables. Kernel density estimate method and numerical integration are applied to obtain the estimator we proposed. The results of simulation studies indicate that the fused-PDFD performs better than other existing screening methods, such as F-KOL filter, sure-independent screening (SIS), sure independent ranking and screening (SIRS), distance correlation sure-independent screening (DCSIS) and robust ranking correlation screening (RRCS). Finally, we demonstrate the validity of fused-PDFD by a real data example.
机译:在本文中,提出了一种新的基于概率密度(质量)函数距离(PDFD)相关性的无模型特征筛选方法,用于超高维数据分析。我们通过概率密度分布改进了融合Kolmogorov滤波器(F-KOL)的筛选程序。所提出的方法也是完全非参数的,可以应用于更通用的预测变量和响应类型,包括离散和连续随机变量。应用核密度估计方法和数值积分获得我们提出的估计量。仿真研究结果表明,融合的PDFD的性能优于其他现有的筛选方法,例如F-KOL过滤器,确定独立的筛选(SIS),确定独立的等级和筛选(SIRS),距离相关确定独立的筛选( DCSIS)和稳健的排名相关性筛选(RRCS)。最后,我们通过一个真实的数据示例来证明融合PDFD的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号