首页> 外文期刊>Journal of statistical computation and simulation >A cluster tree based model selection approach for logistic regression classifier
【24h】

A cluster tree based model selection approach for logistic regression classifier

机译:Logistic回归分类器的基于聚类树的模型选择方法

获取原文
获取原文并翻译 | 示例

摘要

Model selection methods are important to identify the best approximating model. To identify the best meaningful model, purpose of the model should be clearly pre-stated. The focus of this paper is model selection when the modelling purpose is classification. We propose a new model selection approach designed for logistic regression model selection where main modelling purpose is classification. The method is based on the distance between the two clustering trees. We also question and evaluate the performances of conventional model selection methods based on information theory concepts in determining best logistic regression classifier. An extensive simulation study is used to assess the finite sample performances of the cluster tree based and the information theoretic model selection methods. Simulations are adjusted for whether the true model is in the candidate set or not. Results show that the new approach is highly promising. Finally, they are applied to a real data set to select a binary model as a means of classifying the subjects with respect to their risk of breast cancer.
机译:模型选择方法对于识别最佳近似模型很重要。为了确定最佳的有意义的模型,应明确说明模型的目的。当建模目的是分类时,本文的重点是模型选择。我们提出了一种新的模型选择方法,该模型设计用于主要模型目的是分类的逻辑回归模型选择。该方法基于两个聚类树之间的距离。我们还质疑并评估了基于信息论概念的常规模型选择方法在确定最佳逻辑回归分类器中的性能。广泛的仿真研究用于评估基于聚类树的有限样本性能和信息理论模型选择方法。针对真实模型是否在候选集中进行调整。结果表明,这种新方法很有前景。最后,将它们应用于真实数据集以选择二元模型,以根据受试者的乳腺癌风险对受试者进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号