首页> 外文期刊>Journal of statistical computation and simulation >A sufficient condition for the MSE dominance of the positive-part shrinkage estimator when each individual regression coefficient is estimated in a misspecified linear regression model
【24h】

A sufficient condition for the MSE dominance of the positive-part shrinkage estimator when each individual regression coefficient is estimated in a misspecified linear regression model

机译:当在错误指定的线性回归模型中估算每个回归系数时,正部分收缩估计量的MSE优势的充分条件

获取原文
获取原文并翻译 | 示例

摘要

In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model.
机译:在本文中,假设在指定的模型中存在省略的解释变量,我们针对每个回归系数得出一般收缩估计量系列的均方误差(MSE)的精确公式。从分析上可以看出,当我们关注的是估计每个回归系数时,即使省略了相关的回归变量,在某些情况下,正部分收缩估计量的MSE仍小于原始收缩估计量的MSE。而且,通过数值评估,我们证明了该定理在几种特定情况下的效果。结果表明,即使在指定的模型中存在省略的变量,对于参数空间的较大区域,正部分收缩估计量的MSE也比原始收缩估计量小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号