首页> 外文期刊>Journal of Signal Processing Systems >Real-Time Adaptive Background Modeling for Multicore Embedded Systems
【24h】

Real-Time Adaptive Background Modeling for Multicore Embedded Systems

机译:多核嵌入式系统的实时自适应背景建模

获取原文
获取原文并翻译 | 示例

摘要

Current trends in microprocessor design integrate several autonomous processing cores onto the same die. These multicore architectures are particularly well-suited for computer vision applications, where it is typical to perform the same set of operations repeatedly over large datasets. These memory- and computation-intensive applications can reap tremendous performance and accuracy benefits from concurrent execution on multi-core processors. However, cost-sensitive embedded platforms place real-time performance and efficiency demands on techniques to accomplish this task. Furthermore, parallelization and partitioning techniques that allow the application to fully leverage the processing capabilities of each computing core are required for multi-core embedded vision systems. In this paper, we evaluate background modeling techniques on a multicore embedded platform, since this process dominates the execution and storage costs of common video analysis workloads. We introduce a new adaptive backgrounding technique, multimodal mean, which balances accuracy, performance, and efficiency to meet embedded system requirements. Our evaluation compares several pixel-level background modeling techniques in terms of their computation and storage requirements, and functional accuracy for three representative video sequences, across a range of processing and parallelization configurations. We show that the multimodal mean algorithm delivers comparable accuracy of the best alternative (Mixture of Gaussians) with a 3.4× improvement in execution time and a 50% reduction in required storage for optimal block processing on each core. In our analysis of several processing and parallelization configurations, we show how this algorithm can be optimized for embedded multicore performance, resulting in a 25% performance improvement over the baseline processing method.
机译:微处理器设计的当前趋势是将多个自主处理内核集成到同一芯片上。这些多核体系结构特别适合于计算机视觉应用,在计算机视觉应用中,通常需要对大型数据集重复执行同一组操作。这些内存和计算密集型应用程序可以在多核处理器上并发执行,从而获得巨大的性能和准确性。但是,对成本敏感的嵌入式平台对完成此任务的技术提出了实时性能和效率要求。此外,多核嵌入式视觉系统需要允许应用程序充分利用每个计算核心的处理能力的并行化和分区技术。在本文中,我们评估了多核嵌入式平台上的后台建模技术,因为该过程支配了常见视频分析工作负载的执行和存储成本。我们引入了一种新的自适应背景技术,即多峰均值,该技术可以在准确性,性能和效率之间取得平衡,以满足嵌入式系统的需求。我们的评估比较了几种像素级背景建模技术的计算和存储要求,以及在一系列处理和并行化配置范围内三个代表性视频序列的功能准确性。我们表明,多峰均值算法可提供最佳替代方案(高斯混合)的可比精度,执行时间缩短3.4倍,每个核心上的最佳块处理所需存储空间减少50%。在对几种处理和并行化配置的分析中,我们展示了如何针对嵌入式多核性能优化此算法,从而使性能比基准处理方法提高了25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号