首页> 外文期刊>Journal of VLSI signal processing >Bayesian Unsupervised Learning for Source Separation with Mixture of Gaussians Prior
【24h】

Bayesian Unsupervised Learning for Source Separation with Mixture of Gaussians Prior

机译:贝叶斯无监督学习与高斯先验混合源分离

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of source separation in the case of noisy instantaneous mixtures. In a previous work, sources have been modeled by a mixture of Gaussians leading to an hierarchical Bayesian model by considering the labels of the mixture as i.i.d hidden variables. We extend this modeliza-tion to incorporate a Markovian structure for the labels. This extension is important for practical applications which are abundant: unsu- pervised classification and segmentation, pattern recognition and speech signal processing. In order to estimate the mixing matrix and the a priori model parameters, we consider observations as incomplete data. The missing data are sources and labels: sources are missing data for observations and labels are missing data for incomplete missing sources. This hierarchical modelization leads to specific restoration maximization type algorithms. Restoration step can be held in three different manners: (ⅰ) Complete likelihood is estimated by its conditional expectation. This leads to the EM (expectation-maximization) algorithm, (ⅱ) Missing data are estimated by their maximum a posteriori. This leads to JMAP (Joint maximum a posteriori) algorithm, (ⅲ) Missing data are sampled from their a posteriori distributions. This leads to the SEM (stochastic EM) algorithm. A Gibbs sampling scheme is implemented to generate missing data. We have also introduced a relaxation strategy into these algorithms to reduce the computational cost which is due to the exponential influence of the number of source components and the number of the mixture Gaussian components.
机译:本文考虑了在嘈杂的瞬时混合物情况下的源分离问题。在先前的工作中,通过将混合的标签视为i.i.d隐藏变量,通过混合高斯模型对源进行建模,从而形成分层贝叶斯模型。我们扩展了该模型化,为标签合并了马尔可夫结构。此扩展对于大量的实际应用很重要:未分类的分类和分割,模式识别和语音信号处理。为了估计混合矩阵和先验模型参数,我们认为观测值是不完整的数据。缺少的数据是来源和标签:来源是用于观察的缺少数据,而标签是用于不完整的缺少来源的数据。这种分层建模导致了特定的恢复最大化类型算法。可以用三种不同的方式进行恢复步骤:(ⅰ)完全似然是通过其条件期望来估计的。这导致了EM(期望最大化)算法,(ⅱ)丢失的数据通过其最大后验估计。这导致了JMAP(联合最大后验)算法,(ⅲ)从其后验分布中采样丢失的数据。这导致了SEM(随机EM)算法。实施吉布斯采样方案以生成丢失的数据。我们还向这些算法中引入了松弛策略以减少计算成本,这是由于源分量数量和混合高斯分量数量的指数影响所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号