首页> 外文期刊>Journal of VLSI signal processing systems >Audio Fingerprinting: Nearest Neighbor Search in High Dimensional Binary Spaces
【24h】

Audio Fingerprinting: Nearest Neighbor Search in High Dimensional Binary Spaces

机译:音频指纹:高维二进制空间中的最近邻居搜索

获取原文
获取原文并翻译 | 示例

摘要

Audio fingerprinting is an emerging research field in which a song must be recognized by matching an extracted "fingerprint" to a database of known fingerprints. Audio fingerprinting must solve the two key problems of representation and search. In this paper, we are given an 8192-bit binary representation of each five second interval of a song and therefore focus our attention on the problem of high-dimensional nearest neighbor search. High dimensional nearest neighbor search is known to suffer from the curse of dimensionality, i.e. as the dimension increases, the computational or memory costs increase exponentially. However, recently, there has been significant work on efficient, approximate, search algorithms. We build on this work and describe preliminary results of a probabilistic search algorithm. We describe the data structures and search algorithm used and then present experimental results for a database of 1,000 songs containing 12,217,111 fingerprints.
机译:音频指纹识别是一个新兴的研究领域,其中必须通过将提取的“指纹”与已知指纹的数据库进行匹配来识别歌曲。音频指纹识别必须解决表示和搜索的两个关键问题。在本文中,我们为一首歌曲的每5秒间隔提供了8192位二进制表示,因此我们将注意力集中在高维最近邻搜索问题上。已知高维最近邻搜索遭受维数的诅咒,即,随着维数的增加,计算或存储成本成倍增加。然而,最近,在有效的,近似的搜索算法上进行了大量工作。我们以这项工作为基础,并描述了概率搜索算法的初步结果。我们描述了所使用的数据结构和搜索算法,然后针对包含12,217,111个指纹的1,000首歌曲的数据库给出了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号