首页> 外文期刊>Journal of VLSI signal processing systems >Improving the Performance of Hyperspectral Image and Signal Processing Algorithms Using Parallel, Distributed and Specialized Hardware-Based Systems
【24h】

Improving the Performance of Hyperspectral Image and Signal Processing Algorithms Using Parallel, Distributed and Specialized Hardware-Based Systems

机译:使用基于并行,分布式和专用硬件的系统提高高光谱图像和信号处理算法的性能

获取原文
获取原文并翻译 | 示例

摘要

Advances in sensor technology are revolutionizing the way remotely sensed data is collected, managed and analyzed. The incorporation of latest-generation sensors to airborne and satellite platforms is currently producing a nearly continual stream of high-dimensional data, and this explosion in the amount of collected information has rapidly created new processing challenges. For instance, hyperspectral signal processing is a new technique in remote sensing that generates hundreds of spectral bands at different wavelength channels for the same area on the surface of the Earth. Many current and future applications of remote sensing in Earth science, space science, and soon in exploration science will require (near) realtime processing capabilities. In recent years, several efforts have been directed towards the incorporation of high-performance computing (HPC) systems and architectures in remote sensing missions. With the aim of providing an overview of current and new trends in parallel and distributed systems for remote sensing applications, this paper explores three HPC-based paradigms for efficient implementation of the Pixel Purity Index (PPI) algorithm, available from the popular Kodak's Research Systems ENVI software package, as a representative case study for demonstration purposes. Several different parallel programming techniques are used to improve the performance of the PPI on a variety of parallel platforms, including a set of message passing interface (MPI)-based implementations on a massively parallel Beowulf cluster at NASA's Goddard Space Flight Center in Maryland and on a variety of heterogeneous networks of workstations at University of Maryland; a Handel-C implementation of the algorithm on a Virtex-II field programmable gate array (FPGA); and a compute unified device architecture (CUDA)-based implementation on graphical processing units (GPUs) of NVidia. Combined, these parts deliver an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on the potential and emerging challenges of adapting HPC systems to remote sensing problems.
机译:传感器技术的进步正在彻底改变遥感数据的收集,管理和分析方式。目前,将最新一代的传感器整合到机载和卫星平台上正在产生几乎连续的高维数据流,而所收集信息量的激增迅速带来了新的处理挑战。例如,高光谱信号处理是遥感技术中的一项新技术,它可以为地球表面上的同一区域在不同波长的通道上生成数百个光谱带。遥感在地球科学,空间科学以及不久的探索科学中的许多当前和未来应用将需要(接近)实时处理功能。近年来,针对将高性能计算(HPC)系统和体系结构并入遥感任务已做出了一些努力。为了概述用于遥感应用的并行和分布式系统中的当前和新趋势,本文探讨了三种基于HPC的范例,这些范例可有效实现像素纯度指数(PPI)算法,可从流行的柯达研究系统中获得ENVI软件包,作为具有代表性的案例研究,用于演示。几种不同的并行编程技术被用来改善PPI在各种并行平台上的性能,包括在马里兰州NASA的戈达德太空飞行中心以及在大型并行Beowulf集群上的一组基于消息传递接口(MPI)的实现。马里兰大学的各种异构工作站网络;该算法的Handel-C在Virtex-II现场可编程门阵列(FPGA)上的实现;以及在NVidia的图形处理单元(GPU)上基于计算统一设备架构(CUDA)的实现。这些部分结合在一起,可以很好地反映这些领域的最新技术,并为使HPC系统适应遥感问题的潜在和新兴挑战提供了周到的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号