首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Geometrical Kernel Machine for Prediction and Novelty Detection of Disruptive Events in TOKAMAK Machines
【24h】

Geometrical Kernel Machine for Prediction and Novelty Detection of Disruptive Events in TOKAMAK Machines

机译:用于TOKAMAK机器中破坏性事件的预测和新颖性检测的几何核机器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a recently introduced Kernel Machine, called Geometrical Kernel Machine, used to predict disruptive events in nuclear fusion reactors. The algorithm proposed to construct the Kernel Machine is able to automatically determine both the number of neurons and the synaptic weights of a Multilayer Perceptron neural network with a single hidden layer. It has been demonstrated that the resulting network is able to classify any finite set of patterns defined in a real domain. The prediction problem has been here modeled as a two classes classification problem. The geometrical interpretation of the network equations allows us both to develop the disruption predictor and to manage the so called ageing of the kernel machine. In fact, using the same kernel machine, a novelty detection system has been integrated in the predictor, increasing the overall system performance, and the reliability of the predictor.
机译:本文介绍了一种最新推出的核机,称为几何核机,用于预测核聚变反应堆中的破坏性事件。提出的构造内核机器的算法能够自动确定具有单个隐藏层的多层感知器神经网络的神经元数量和突触权重。已经证明,结果网络能够对在实际域中定义的任何有限模式集进行分类。在此,将预测问题建模为两类分类问题。网络方程的几何解释使我们既可以开发中断预测器,又可以管理所谓的内核计算机老化。实际上,使用同一内核计算机,新颖性检测系统已集成到预测器中,从而提高了整体系统性能以及预测器的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号