首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Real-time Hand Gesture Recognition from Depth Images Using Convex Shape Decomposition Method
【24h】

Real-time Hand Gesture Recognition from Depth Images Using Convex Shape Decomposition Method

机译:凸形状分解法从深度图像中实时手势识别

获取原文
获取原文并翻译 | 示例

摘要

Hand gesture recognition is one of the most natural and intuitive ways to communicate between people and machines, since it closely mimics how human interact with each other. This paper presents a novel method for real-time markerless hand gesture recognition from depth images. The proposed method encompasses a collection of techniques that enable the detection, segmentation and recognition of hand gestures. A Hand detection and location method is employed using the depth information acquired from a depth sensor. Then, the hand is robustly segmented in cluttered background without any marker around. A convex shape decomposition method based on Radius Morse function is proposed for hand shape decomposition in real-time. Hand palm, fingertips and hand skeleton are recognized based on the hand shape decomposition and hand features. Moreover, we present a method for recognition of two-hand gestures. Representative experimental results demonstrate qualitatively and quantitatively that accurate hand gesture recognition can be achieved for real-time applications.
机译:手势识别是人与机器之间进行通信的最自然,最直观的方法之一,因为它紧密地模仿了人与人之间的交互方式。本文提出了一种从深度图像中实时进行无标记手势识别的新方法。所提出的方法包括使得能够检测,分割和识别手势的技术的集合。使用从深度传感器获取的深度信息来采用手检测和定位方法。然后,将手在杂乱的背景中稳健地分割,而周围没有任何标记。提出了一种基于半径莫尔斯函数的凸形分解方法,用于手形的实时分解。根据手的形状分解和手的特征来识别手掌,指尖和手的骨骼。此外,我们提出了一种识别双手手势的方法。代表性的实验结果定性和定量地证明了针对实时应用可以实现准确的手势识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号