首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning
【24h】

Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning

机译:学习不连贯子空间:通过不连贯字典学习进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belonging to different classes. We test our method as a feature transform for supervised classification, first by visualising transformed features from a synthetic dataset and from the 'iris' dataset, then by using the resulting features in a classification experiment.
机译:在本文中,我们介绍了监督迭代投影和旋转(s-ipr)算法,这是一种从数据中学习判别式非相干子空间的方法。我们将s-ipr导出为先前提出的用于非相干字典学习的迭代投影和旋转(ipr)算法的有监督扩展,并使用它来学习对属于不同类的信号进行建模的非相干子空间。我们首先通过可视化来自合成数据集和“ iris”数据集的变换特征,然后在分类实验中使用得到的特征,来测试我们的方法作为用于监督分类的特征变换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号