首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Data Allocation with Minimum Cost under Guaranteed Probability for Multiple Types of Memories
【24h】

Data Allocation with Minimum Cost under Guaranteed Probability for Multiple Types of Memories

机译:在保证概率的情况下针对多种类型的内存分配具有最低成本的数据

获取原文
获取原文并翻译 | 示例

摘要

As the advance of memory technologies, multiple types of memories such as different kinds of non-volatile memory (NVM), SRAM, DRAM, etc. provide a flexible configuration considering performance, energy and cost. For improving the performance of systems with multiple types of memories, data allocation is one of the most important tasks. The previous studies on data allocation problem assume the worst (fixed) case of data-access frequencies. However, the data allocation produced by employing worst case usually leads to an inferior performance for most of time. In this paper, we model this problem by probabilities and design efficient algorithms that can give optimal-cost data allocation with a guaranteed probability. We propose DAGP algorithm produces a set of feasible data allocation solutions which generates the minimum access time or cost guaranteed by a given probability. We also propose a polynomial-time algorithm, MCS algorithm, to solve this problem. The experiments show that our technique can significantly reduce the access cost compared with the technique considering worst case scenario. For example, comparing with the optimal result generated by employing the worst cases, DAGP can reduce memory access cost by 9.92 % on average when guaranteed probability is set to be 0.9. Moreover, for 90 percents of cases, memory access time is reduced by 12.47 % on average. Comparing with greedy algorithm, DAGP and MCS can reduce memory access cost by 78.92 % and 44.69 % on average when guaranteed probability is set to be 0.9.
机译:随着存储器技术的进步,考虑到性能,能量和成本,诸如不同种类的非易失性存储器(NVM),SRAM,DRAM等的多种类型的存储器提供了灵活的配置。为了提高具有多种类型存储器的系统的性能,数据分配是最重要的任务之一。先前有关数据分配问题的研究假设数据访问频率最差(固定)。但是,在大多数情况下,采用最坏情况产生的数据分配通常会导致性能下降。在本文中,我们通过概率对问题进行建模,并设计有效的算法,从而可以以有保证的概率给出最优成本的数据分配。我们提出DAGP算法可产生一组可行的数据分配解决方案,该方案可产生给定概率保证的最小访问时间或成本。我们还提出了多项式时间算法MCS算法来解决此问题。实验表明,与考虑最坏情况的技术相比,我们的技术可以显着降低访问成本。例如,与采用最坏情况产生的最佳结果相比,当保证的概率设置为0.9时,DAGP可以平均减少9.92%的内存访问成本。此外,在90%的情况下,内存访问时间平均减少了12.47%。与贪婪算法相比,当保证概率设为0.9时,DAGP和MCS可以平均减少78.92%和44.69%的内存访问成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号