首页> 外文期刊>Journal of computational science >Cost-aware optimal data allocations for multiple dimensional heterogeneous memories using dynamic programming in big data
【24h】

Cost-aware optimal data allocations for multiple dimensional heterogeneous memories using dynamic programming in big data

机译:使用大数据中的动态编程为多维异构内存分配成本意识的最佳数据分配

获取原文
获取原文并翻译 | 示例

摘要

Multiple constraints in SPMs are considered a problem that can be solved in a nondeterministic polynomial time. In this paper, we propose a novel approach solving the data allocations in multiple dimensional constraints. For supporting the approach, we develop a novel algorithm that is designed to solve the data allocations under multiple constraints in a polynomial time. Our proposed approach is a novel scheme of minimizing the total costs when executing SPM under multiple dimensional constraints. Our experimental evaluations have proved the adaptation of the proposed model that could be an efficient approach of solving data allocation problems for SPMs. (C) 2016 Elsevier B.V. All rights reserved.
机译:SPM中的多个约束被认为是可以在不确定的多项式时间内解决的问题。在本文中,我们提出了一种新颖的方法来解决多维约束中的数据分配。为了支持该方法,我们开发了一种新颖的算法,旨在解决多项式时间内多个约束下的数据分配问题。我们提出的方法是一种在多维约束下执行SPM时将总成本降至最低的新颖方案。我们的实验评估证明了所提出模型的适应性,这可能是解决SPM数据分配问题的有效方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号