首页> 外文期刊>Journal of VLSI signal processing systems >A Keyword-Aware Language Modeling Approach to Spoken Keyword Search
【24h】

A Keyword-Aware Language Modeling Approach to Spoken Keyword Search

机译:语音关键词搜索的关键词感知语言建模方法

获取原文
获取原文并翻译 | 示例

摘要

A keyword-sensitive language modeling framework for spoken keyword search (KWS) is proposed to combine the advantages of conventional keyword-filler based and large vocabulary continuous speech recognition (LVCSR) based KWS systems. The proposed framework allows keyword search systems to be flexible on keyword target settings as in the LVCSR-based keyword search. In low-resource scenarios it facilitates KWS with an ability to achieve high keyword detection accuracy as in the keyword-filler based systems and to attain a low false alarm rate inherent in the LVCSR-based systems. The proposed keyword-aware grammar is realized by incorporating keyword information to re-train and modify the language models used in LVCSR-based KWS. Experimental results, on the evalpart1 data of the IARPA Babel OpenKWS13 Vietnamese tasks, indicate that the proposed approach achieves a relative improvement, over the conventional LVCSR-based KWS systems, of the actual term weighted value for about 57 % (from 0.2093 to 0.3287) and 20 % (from 0.4578 to 0.5486) on the limited-language-pack and full-language-pack tasks, respectively.
机译:提出了一种针对口语关键词搜索(KWS)的关键词敏感语言建模框架,以结合传统的基于关键词填充器和基于大词汇量连续语音识别(LVCSR)的KWS系统的优势。所提出的框架允许关键字搜索系统像基于LVCSR的关键字搜索一样灵活地设置关键字目标。在资源较少的情况下,它可以帮助KWS达到与基于关键字填充程序的系统一样高的关键字检测精度,并获得基于LVCSR的系统固有的低误报率。通过结合关键字信息来重新训练和修改基于LVCSR的KWS中使用的语言模型,可以实现所提出的关键字感知语法。基于IARPA Babel OpenKWS13越南任务的evalpart1数据的实验结果表明,与基于LVCSR的传统KWS系统相比,该方法相对于实际术语加权值实现了约57%的相对改进(从0.2093到0.3287)。限制语言包和完整语言包任务分别为20%(从0.4578到0.5486)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号