首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Lung-Nodule Classification Based on Computed Tomography Using Taxonomic Diversity Indexes and an SVM
【24h】

Lung-Nodule Classification Based on Computed Tomography Using Taxonomic Diversity Indexes and an SVM

机译:基于分类学指数和支持向量机的计算机断层扫描技术的肺结节分类

获取原文
获取原文并翻译 | 示例

摘要

The present work aims to develop a methodology for classifying lung nodules using the LIDC-IDRI image database. The proposed methodology is based on image-processing and pattern-recognition techniques. To describe the texture of nodule and non-nodule candidates, we use the Taxonomic Diversity and Taxonomic Distinctness Indexes from ecology. The calculation of these indexes is based on phylogenetic trees, which, in this work, are applied to the candidate characterization. Finally, we apply a Support Vector Machine (SVM) as a classifier. In the testing stage, we used 833 exams from the LIDC-IDRI image database. To apply the methodology, we divided the complete database into two groups for training and testing. We used training and testing partitions of 20/80 %, 40/60 %, 60/40 %, and 80/20 %. The division was repeated five times at random. The presented methodology shows promising results for classifying nodules and non-nodules, presenting a mean accuracy of 98.11 %. Lung cancer presents the highest mortality rate and has one of the lowest survival rates after diagnosis. Therefore, the earlier the diagnosis, the higher the chances of a cure for the patient. In addition, the more information available to the specialist, the more precise the diagnosis will be. The methodology proposed here contributes to this.
机译:本工作旨在开发一种使用LIDC-IDRI图像数据库对肺结节进行分类的方法。所提出的方法是基于图像处理和模式识别技术的。为了描述根瘤和非根瘤候选的质地,我们使用了生态学中的分类学多样性和分类学区别指数。这些指标的计算基于系统发育树,在本研究中将其应用于候选特征。最后,我们应用支持向量机(SVM)作为分类器。在测试阶段,我们使用了LIDC-IDRI图像数据库中的833项考试。为了应用该方法,我们将完整的数据库分为两组进行培训和测试。我们使用了20/80%,40/60%,60/40%和80/20%的训练和测试分区。该划分随机重复五次。提出的方法显示出对结节和非结节进行分类的有希望的结果,平均准确性为98.11%。肺癌在诊断后表现出最高的死亡率,并且是最低的存活率之一。因此,诊断越早,患者治愈的机会就越高。另外,专家可获得的信息越多,诊断将越精确。这里提出的方法对此做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号