首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Object Detection in RGB-D Images via Anchor Box with Multi-Reduced Region Proposal Network and Multi-Pooling
【24h】

Object Detection in RGB-D Images via Anchor Box with Multi-Reduced Region Proposal Network and Multi-Pooling

机译:具有多降低区域提案网络的锚盒的RGB-D图像对象检测和多池

获取原文
获取原文并翻译 | 示例

摘要

With the latest development of automation technology, object detection technology has received more and more research attention. Automated object detection technology can reduce labor costs, avoid the problem visual fatigue, and is more consistent than human observers. Therefore, as deep learning has become commonplace, it has been used for object detection with great results. However, most studies in this field use RGB images as input for deep-learning classifiers instead of RGB-D input. Depth information captures both the appearance and shape of objects and can be captured in any lighting conditions. Depth information could improve the accuracy of object identification, which could improve safety in a wide range of applications. RGB color information has also been shown to be key to successful object detection. So in this paper, we improve our object detection network by using RGB-D images as input. We use the Pruning Faster R-CNN proposed by Shih et al. as a base and design an accurate and fast architecture for object detection. In addition to adding depth as input, we add other new types of anchor boxes to improve performance of some objects. We also discuss the impact of pooling training data with multiple region proposal networks (RPN) and regions of interest (ROI). We performed experiments on the SUN RGB-D and NYU.v2 datasets. The results show that after adding depth to the inputs, the mean average precision (mAP) of our architecture is 9.017% higher than the mAP of the original Faster R-CNN architecture using only RGB information as input from the SUN RGB-D datasets. Working with either dataset, the network takes only 0.123 seconds to test an RGB-D image with GPU acceleration. Adjusting the arrangement of anchor boxes improved object-detection accuracy by 1.58% when using the SUN RGB-D dataset.
机译:随着自动化技术的最新发展,对象检测技术得到了越来越多的研究关注。自动对象检测技术可以降低劳动力成本,避免出现的视觉疲劳,并且比人类观察者更加一致。因此,随着深度学习变得普遍,它已被用于具有重要结果的对象检测。然而,在该领域中的大多数研究使用RGB图像作为深度学习分类器而不是RGB-D输入的输入。深度信息捕获对象的外观和形状,可以在任何照明条件下捕获。深度信息可以提高对象识别的准确性,这可以提高各种应用中的安全性。 RGB颜色信息也被证明是成功对象检测的关键。因此,在本文中,我们通过使用RGB-D图像作为输入来改善对象检测网络。我们使用Shih等人提出的修剪更快的R-CNN。作为基础并设计用于对象检测的准确和快速架构。除了将深度添加为输入外,我们还添加其他新类型的锚盒,以提高某些对象的性能。我们还讨论了汇集培训数据与多个区域提案网络(RPN)和兴趣区域(ROI)的影响。我们在Sun RGB-D和NYU.v2数据集上执行了实验。结果表明,在对输入添加深度后,我们的架构的平均平均精度(MAP)比仅从Sun RGB-D数据集的输入,仅使用RGB信息的原始R-CNN架构的地图高9.017%。使用DataSet使用,网络只需0.123秒即可使用GPU加速度测试RGB-D图像。使用Sun RGB-D数据集时,调整锚盒的排列提高了对象检测精度1.58%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号