【24h】

Monotonic Optimization of Dataflow Buffer Sizes

机译:数据流缓冲区大小的单调优化

获取原文
获取原文并翻译 | 示例

摘要

Many high data-rate video-processing applications are subject to a trade-off between throughput and the sizes of buffers in the system (the storage distribution). These applications have strict requirements with respect to throughput as this directly relates to the functional correctness. Furthermore, the size of the storage distribution relates to resource usage which should be minimized in many practical cases. The computation kernels of high data-rate video-processing applications can often be specified by cyclo-static dataflow graphs. We therefore study the problem of minimization of the total (weighted) size of the storage distribution under a throughput constraint for cyclo-static dataflow graphs. By combining ideas from the area of monotonic optimization with the causal dependency analysis from a state-of-the-art storage optimization approach, we create an algorithm that scales better than the state-of-the-art approach. Our algorithm can provide a solution and a bound on the suboptimality of this solution at any time, and it iteratively improves this until the optimal solution is found. We evaluate our algorithm using several models from the literature, and on models of a high data-rate video-processing application from the healthcare domain. Our experiments show performance increases up to several orders of magnitude.
机译:许多高数据速率视频处理应用程序需要在吞吐量和系统中的缓冲区大小(存储分布)之间进行权衡。这些应用程序对吞吐量有严格的要求,因为这直接关系到功能的正确性。此外,存储分布的大小与资源使用有关,在许多实际情况下应将其最小化。高数据速率视频处理应用程序的计算内核通常可以通过循环静态数据流图来指定。因此,我们针对循环静态数据流图,在吞吐量约束下研究了使存储分布的总(加权)大小最小化的问题。通过将单调优化领域的思想与最新的存储优化方法的因果关系分析相结合,我们创建了一种比最新方法可扩展性更好的算法。我们的算法可以随时提供解决方案,并且可以限制该解决方案的次优性,并且可以迭代地对其进行改进,直到找到最佳解决方案为止。我们使用文献中的几种模型以及医疗领域中的高数据速率视频处理应用程序的模型来评估我们的算法。我们的实验表明性能提高了几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号