首页> 外文期刊>Journal of Scientific Computing >High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws
【24h】

High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws

机译:双曲守恒律的高阶多导数时间积分器

获取原文
获取原文并翻译 | 示例
       

摘要

Multiderivative time integrators have a long history of development for ordinary differential equations, and yet to date, only a small subset of these methods have been explored as a tool for solving partial differential equations (PDEs). This large class of time integrators include all popular (multistage) Runge-Kutta as well as single-step (multiderivative) Taylor methods. (The latter are commonly referred to as Lax-Wendroff methods when applied to PDEs). In this work, we offer explicit multistage multiderivative time integrators for hyperbolic conservation laws. Like Lax-Wendroff methods, multiderivative integrators permit the evaluation of higher derivatives of the unknown in order to decrease the memory footprint and communication overhead. Like traditional Runge-Kutta methods, multiderivative integrators admit the addition of extra stages, which introduce extra degrees of freedom that can be used to increase the order of accuracy or modify the region of absolute stability. We describe a general framework for how these methods can be applied to two separate spatial discretizations: the discontinuous Galerkin (DG) method and the finite difference essentially non-oscillatory (FD-WENO) method. The two proposed implementations are substantially different: for DG we leverage techniques that are closely related to generalized Riemann solvers; for FD-WENO we construct higher spatial derivatives with central differences. Among multiderivative time integrators, we argue that multistage two-derivative methods have the greatest potential for multidimensional applications, because they only require the flux function and its Jacobian, which is readily available. Numerical results indicate that multiderivative methods are indeed competitive with popular strong stability preserving time integrators.
机译:多导数时间积分器对常微分方程的发展已有很长的历史,但迄今为止,仅将这些方法的一小部分作为求解偏微分方程(PDE)的工具进行了研究。这类时间积分器包括所有流行的(多阶段)Runge-Kutta方法以及单步(多导数)泰勒方法。 (将后者应用于PDE时通常称为Lax-Wendroff方法)。在这项工作中,我们为双曲守恒定律提供了显式的多级多导数时间积分器。像Lax-Wendroff方法一样,多导数积分器允许评估未知数的更高导数,以减少内存占用量和通信开销。像传统的Runge-Kutta方法一样,多导数积分器也需要增加额外的级数,这会引入额外的自由度,这些自由度可用于提高精度等级或修改绝对稳定性区域。我们描述了如何将这些方法应用于两个单独的空间离散化的通用框架:不连续Galerkin(DG)方法和本质差分非振荡(FD-WENO)方法。两种建议的实现方式有很大不同:对于DG,我们利用与广义Riemann求解器密切相关的技术;对于FD-WENO,我们构造具有中心差异的较高空间导数。在多导数时间积分器中,我们认为多级二导数方法在多维应用中具有最大的潜力,因为它们仅需要通量函数及其易于获得的雅可比函数。数值结果表明,多导数方法确实与流行的强稳定性保持时间积分器竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号