首页> 外文期刊>Journal of Scientific Computing >An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations
【24h】

An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations

机译:可压缩Euler方程的显式高阶单级单步保正差分WENO方法。

获取原文
获取原文并翻译 | 示例

摘要

In this work we construct a high-order, single-stage, single-step positivity-preserving method for the compressible Euler equations. Space is discretized with the finite difference weighted essentially non-oscillatory method. Time is discretized through a Lax-Wendroff procedure that is constructed from the Picard integral formulation of the partial differential equation. The method can be viewed as a modified flux approach, where a linear combination of a low-and high-order flux defines the numerical flux used for a single-step update. The coefficients of the linear combination are constructed by solving a simple optimization problem at each time step. The high-order flux itself is constructed through the use of Taylor series and the Cauchy-Kowalewski procedure that incorporates higher-order terms. Numerical results in one-and two-dimensions are presented.
机译:在这项工作中,我们为可压缩的Euler方程构造了一个高阶,单阶段,单步正性保持方法。用有限差分加权的基本非振荡方法离散空间。通过Lax-Wendroff程序离散时间,该程序由偏微分方程的Picard积分公式构造而成。该方法可以看作是改进的通量方法,其中低阶和高阶通量的线性组合定义了用于单步更新的数值通量。线性组合的系数是通过在每个时间步求解一个简单的优化问题来构造的。高阶通量本身是通过使用泰勒级数和结合了高阶项的柯西-科瓦列夫斯基程序构造的。给出了一维和二维的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号