首页> 外文期刊>Journal of Scientific Computing >Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Lagrangian Coherent Structures Extraction
【24h】

Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Lagrangian Coherent Structures Extraction

机译:基于欧拉插值的流图构造和线积分计算方案及其在拉格朗日相干结构提取中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose and analyze a new class of Eulerian methods for constructing both the forward and the backward flow maps of sufficiently smooth dynamical systems. These methods improve previous Eulerian approaches so that the computations of the forward flow map can be done on the fly as one imports or measures the velocity field forward in time. Similar to typical Lagrangian or semi-Lagrangian methods, the proposed methods require an interpolation at each step. Having said that, the Eulerian method interpolates d components of the flow maps in the d dimensional space but does not require any -dimensional spatial-temporal interpolation as in the Lagrangian approaches. We will also extend these Eulerian methods to compute line integrals along any Lagrangian particle. The paper gives a computational complexity analysis and an error estimate of these Eulerian methods. The method can be applied to a wide range of applications for flow map constructions including the finite time Lyapunov exponent computations, the coherent ergodic partition, and high frequency wave propagations using geometric optic.
机译:我们提出并分析了一类新的欧拉方法,以构造足够光滑的动力学系统的正向和反向流图。这些方法改进了以前的欧拉方法,因此,当一个进口或及时测量速度场时,可以即时进行正向流图的计算。与典型的拉格朗日或半拉格朗日方法相似,提出的方法在每个步骤都需要插值。话虽如此,欧拉方法在d维空间中插值流图的d分量,但是不需要像拉格朗日方法那样进行任何维时空插值。我们还将扩展这些欧拉方法,以计算沿任何拉格朗日粒子的线积分。本文给出了这些欧拉方法的计算复杂度分析和误差估计。该方法可广泛应用于流图构造,包括有限时间Lyapunov指数计算,相干遍历分割以及使用几何光学的高频波传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号