首页> 外文期刊>Journal of Scheduling >Effective on-line algorithms for reliable due date quotation and large-scale scheduling
【24h】

Effective on-line algorithms for reliable due date quotation and large-scale scheduling

机译:有效的在线算法可确保可靠的到期日报价和大规模计划

获取原文
获取原文并翻译 | 示例

摘要

We consider the sequencing of a series of jobs that arrive at a single processor over time. At each job's arrival time, a due date must be quoted for the job, and the job must complete processing before its quoted due date. The objective is to minimize the sum (or average) of quoted due dates, or equivalently, the average quoted lead time. In this paper, we propose on-line heuristics for this problem and characterize the conditions under which these heuristics are asymptotically optimal. Computational testing further demonstrates the relative effectiveness of these heuristics under various conditions.
机译:我们考虑随时间推移到达单个处理器的一系列作业的顺序。在每个作业的到达时间,必须为该作业引用一个到期日,并且该作业必须在其报价的到期日之前完成处理。目的是最小化报价到期日的总和(或平均值),或等效地,平均报价提前期。在本文中,我们提出了针对该问题的在线启发式方法,并描述了这些启发式渐近最优的条件。计算测试进一步证明了这些启发式方法在各种条件下的相对有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号