首页> 外文期刊>Journal of Russian laser research >MECHANISM AND EXPERIMENTAL STUDY OF FEMTOSECOND-LASER SUPER-RESOLUTION PROCESSING BASED ON BEAM SHAPING TECHNOLOGY
【24h】

MECHANISM AND EXPERIMENTAL STUDY OF FEMTOSECOND-LASER SUPER-RESOLUTION PROCESSING BASED ON BEAM SHAPING TECHNOLOGY

机译:基于光束整形技术的飞秒激光超分辨加工机理与实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

The three-dimensional microsolid can be fabricated by scanning point-by-point inside the polymer material according to the predetermined trajectory in femtosecond-laser two-photon direct writing mode. In the process of machining, the shape and intensity distribution of focus spot are changed by some processing parameters, which affect the processing accuracy and surface quality. Based on Fresnel diffraction theory and the intensity distribution function of focal spot, the focal spot shape is simulated and the main factors affecting the light intensity distribution are analyzed theoretically and simulated numerically. We propose a shaping method to improve the asymmetric shape of the facula by adding a prefocusing lens. According to the mechanism of femtosecond-laser super-resolution processing, we propose a beam shaping method using four-ring complex transmittance phase plate to achieve super-resolution processing. The phase plate was optimized on the global optimization algorithm and genetic algorithm. The validation experiment was carried out by scanning the photochromic material film with pulsed laser and reading the fluorescence signal of the photochromic point with single photon confocal. The experimental results show that the facula distribution is approximately symmetrical, and the size of facula is decreased obviously. The compression ratio is basically consistent with the theoretical calculation results. Therefore, super-resolution processing can be achieved by adding pre-focusing lens and phase plate to shaping the laser beam. The results of theoretical and experimental studies provide sufficient basis for improving the machining accuracy and surface quality of microdevices.
机译:可以通过以飞秒激光双光子直接写入模式根据预定轨迹逐点扫描聚合物材料内部来制造三维微固体。在加工过程中,焦点的形状和强度分布会受到一些加工参数的影响,从而影响加工精度和表面质量。基于菲涅耳衍射理论和焦点强度分布函数,对焦点形状进行了模拟,并对影响光强度分布的主要因素进行了理论分析和数值模拟。我们提出一种成形方法,通过添加预聚焦透镜来改善光斑的不对称形状。根据飞秒激光超分辨率处理的机理,提出了一种采用四环复透射率相位片的光束整形方法来实现超分辨率处理。在全局优化算法和遗传算法上对相板进行了优化。通过用脉冲激光扫描光致变色材料膜并用单光子共聚焦读取光致变色点的荧光信号进行验证实验。实验结果表明,光斑分布基本对称,光斑尺寸明显减小。压缩比与理论计算结果基本一致。因此,可以通过添加预聚焦透镜和相位板来整形激光束来实现超分辨率处理。理论和实验研究的结果为提高微器件的加工精度和表面质量提供了充分的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号