首页> 外文期刊>Journal of Real-Time Image Processing >Deep neural networks for efficient steganographic payload location
【24h】

Deep neural networks for efficient steganographic payload location

机译:深度神经网络,用于高效的隐写载荷位置

获取原文
获取原文并翻译 | 示例

摘要

The prevailing method for steganographic payload location aimed at LSB matching is the MAP method, which requires a few hundreds of stego images with load-carrying pixels at same locations and relatively high embedding rates. However, in practice, especially communication security, it is unwise for steganographers to generate stego images with high payloads or heavily utilize a same embedding key. Thus, the requirement of MAP is actually to some degree out of reach which leads to a performance degradation when faced with insufficient stego images with low embedding rates. To this end, we propose a tailored deep neural network (DNN) equipped with the improved feature named the mean square of adjacency pixel difference, which remarkably outperforms the previous state-of-the-art methods not only in terms of accuracy but also efficiency. Our approach can considerably reduce computational costs because no cover estimate, as represented by the key in MAP, is involved. This merit stems from the methodology we adopted that takes payload location as a binary classification problem for each pixel. Additionally, our DNN is consistently superior than MAP irrespective of embedding rates. The significance of our main design points in DNN and the improved features are verified, by experiment results. Besides, the time required in our method to handle 256x256 pixel images is 82.54ms on the average, which is nearly 14 times faster than that of MAP. On the basis of relevant knowledge, the incorporation of feature extraction into DNN architecture is likely to enable future researchers to specify real-time payload locations.
机译:用于LSB匹配的隐写有效载荷位置的现行方法是地图方法,其需要几百个Setego图像,同一位置处具有负载像素和相对高的嵌入速率。然而,在实践中,尤其是通信安全性,钉记录人来说是一种不明智的,以产生具有高有效载荷的标号图像或大量利用相同的嵌入密钥。因此,地图的要求实际上是在某种程度上导致在面对具有低嵌入速率的STEGO图像时的性能下降。为此,我们提出了一种定制的深度神经网络(DNN),其配备了名为邻接像素差异的均线的改进特征,这不仅优于先前的最先进的方法,不仅可以在准确性方面而且效率。我们的方法可以大大降低计算成本,因为没有覆盖估计,如地图中的钥匙所代表。这一优点来自我们采用的方法,该方法将有效载荷位置作为每个像素的二进制分类问题。此外,无论嵌入速率如何,我们的DNN都比地图始终如一。通过实验结果,验证了DNN中主要设计点和改进特征的重要性。此外,我们处理256x256像素图像的方法所需的时间是82.54ms的平均值,比地图的速度速度近14倍。在相关知识的基础上,将特征提取到DNN架构中的结合可能使得未来的研究人员能够指定实时有效载荷位置。

著录项

  • 来源
    《Journal of Real-Time Image Processing》 |2019年第3期|635-647|共13页
  • 作者单位

    Natl Digital Switching Syst Engn & Technol Res Ct Zhengzhou Henan Peoples R China;

    Natl Digital Switching Syst Engn & Technol Res Ct Zhengzhou Henan Peoples R China;

    Changshu Inst Technol Sch Comp Sci & Engn Changshu Jiangsu Peoples R China;

    Natl Digital Switching Syst Engn & Technol Res Ct Zhengzhou Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Steganalysis; Payload location; LSB matching; DNN;

    机译:麻痹;有效载荷位置;LSB匹配;DNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号