首页> 外文期刊>Journal of computer security >DEEP RETURN: A deep neural network can learn how to detect previously-unseen ROP payloads without using any heuristics
【24h】

DEEP RETURN: A deep neural network can learn how to detect previously-unseen ROP payloads without using any heuristics

机译:深度回报:深度神经网络可以学习如何在不使用任何启发式的情况下学习以前检测以前的rop有效载荷

获取原文
获取原文并翻译 | 示例

摘要

Return-oriented programming (ROP) is a code reuse attack that chains short snippets of existing code to perform arbitrary operations on target machines. Existing detection methods against ROP exhibit unsatisfactory detection accuracy and/or have high runtime overhead.In this paper, we present DEEPRETURN, which innovatively combines address space layout guided disassembly and deep neural networks to detect ROP payloads. The disassembler treats application input data as code pointers and aims to find any potential gadget chains, which are then classified by a deep neural network as benign or malicious. Our experiments show that DEEPRETURN has high detection rate (99.3%) and a very low false positive rate (0.01%). DEEPRETURN successfully detects all of the 100 real-world ROP exploits that are collected in-the-wild, created manually or created by ROP exploit generation tools. DEEPRETURN is non-intrusive and does not incur any runtime overhead to the protected program.
机译:以返回返回的编程(ROP)是一种代码重用攻击,即在目标机器上链接短片段以便在目标计算机上执行任意操作。针对ROP的现有检测方法表现出不令人满意的检测精度和/或具有高运行时开销。本文提出了Deepreturn,它创新地结合了地址空间布局导向拆卸和深神经网络来检测ROP有效载荷。 Disassembler将应用程序输入数据视为代码指针,并旨在找到任何潜在的小工具链,然后将深度神经网络作为良性或恶意为分类。我们的实验表明,Deepreturn具有高检测率(99.3%)和非常低的假阳性率(0.01%)。 Deepreturn成功地检测到野外收集的100个现实世界ROP漏洞,由ROP Exploit生成工具创建或创建。 Deepreturn是非侵入性的,不会导致受保护程序的任何运行时开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号