首页> 外文期刊>Journal of Real-Time Image Processing >Optical flow approximation based motion object extraction for MPEG-2 video stream
【24h】

Optical flow approximation based motion object extraction for MPEG-2 video stream

机译:基于光流逼近的MPEG-2视频流运动对象提取

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a compressed-domain motion object extraction algorithm based on optical flow approximation for MPEG-2 video stream. The discrete cosine transform (DCT) coefficients of P and B frames are estimated to reconstruct DC + 2AC image using their motion vectors and the DCT coefficients in I frames, which can be directly extracted from MPEG-2 compressed domain. Initial optical flow is estimated with Black's optical flow estimation framework, in which DC image is substituted by DC + 2AC image to provide more intensity information. A high confidence measure is exploited to generate dense and accurate motion vector field by removing noisy and false motion vectors. Global motion estimation and iterative rejection are further utilized to separate foreground and background motion vectors. Region growing with automatic seed selection is performed to extract accurate object boundary by motion consistency model. The object boundary is further refined by partially decoding the boundary blocks to improve the accuracy. Experimental results on several test sequences demonstrate that the proposed approach can achieve compressed-domain video object extraction for MPEG-2 video stream in CIF format with real-time performance.
机译:提出了一种基于光流逼近的MPEG-2视频流压缩域运动目标提取算法。估计P和B帧的离散余弦变换(DCT)系数,以利用其运动矢量和I帧中的DCT系数来重构DC + 2AC图像,这些图像可以直接从MPEG-2压缩域中提取。使用布莱克的光流估算框架估算初始光流,其中DC图像被DC + 2AC图像替代,以提供更多的强度信息。利用高置信度度量通过消除噪声和虚假运动矢量来生成密集且准确的运动矢量场。全局运动估计和迭代拒绝被进一步用于分离前景和背景运动矢量。通过运动一致性模型执行具有自动种子选择的区域生长以提取准确的对象边界。通过部分解码边界块进一步改善对象边界,以提高精度。在多个测试序列上的实验结果表明,该方法可以实现具有CIF格式的MPEG-2视频流的压缩域视频对象提取,并且具有实时性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号