首页> 外文期刊>Journal of Real-Time Image Processing >Predicting and recognizing human interactions in public spaces
【24h】

Predicting and recognizing human interactions in public spaces

机译:预测和认识人类在公共空间中的互动

获取原文
获取原文并翻译 | 示例

摘要

We present an extensive survey of methods for recognizing human interactions and propose a method for predicting rendezvous areas in observable and unobservable regions using sparse motion information. Rendezvous areas indicate where people are likely to interact with each other or with static objects (e.g., a door, an information desk or a meeting point). The proposed method infers the direction of movement by calculating prediction lines from displacement vectors and temporally accumulates intersecting locations generated by prediction lines. The intersections are then used as candidate rendezvous areas and modeled as spatial probability density functions using Gaussian Mixture Models. We validate the proposed method to predict dynamic and static rendezvous areas on real-world datasets and compare it with related approaches.
机译:我们提出了一种广泛的方法来识别人类交互作用,并提出了一种使用稀疏运动信息来预测可观察和不可观察区域中会合区域的方法。交会区域表示人们可能会彼此互动或与静态物体(例如门,问讯处或会面地点)进行交互的地方。所提出的方法通过根据位移矢量计算预测线来推断运动方向,并在时间上累积由预测线生成的相交位置。然后,将这些交集用作候选会合区域,并使用高斯混合模型将其建模为空间概率密度函数。我们验证了所提出的方法来预测现实世界数据集上的动态和静态会合区域,并将其与相关方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号