首页> 外文期刊>Journal of Real-Time Image Processing >Accurate and efficient shape matching approach using vocabularies of multi-feature space representations
【24h】

Accurate and efficient shape matching approach using vocabularies of multi-feature space representations

机译:使用多特征空间表示的词汇表进行精确高效的形状匹配

获取原文
获取原文并翻译 | 示例

摘要

Selection of compressed, robust and accurate features is the fundamental ingredient of effective content-based image recognition and retrieval using shape information of objects in the image. In this paper, we present a four-stage system for real-time object recognition and retrieval that employs multiple feature space representation using contour information. In the first stage, we pre-process the shapes to cater for the presence of distortions such as cracks that can significantly distort the contour information of the shape. We then generate multiple feature space representations of shapes to be used later in proposed combination for efficient and accurate retrieval of shapes using a hierarchical indexing structure. To enable real-time image-based shape analysis by enhancing the efficiency and reducing the storage requirement of proposed shape descriptors, we present a quantization approach to generate vocabulary of feature space representation of shapes. These features are then combined in an ensemble for accurate and efficient shape retrieval and recognition in the presence of large shape datasets. The proposed system is evaluated using publicly available shape datasets such as MPEG 7, Swedish leaf and KIMIA 99 datasets. Our approach achieves higher accuracies which are better than state-of-the-art approaches reported in literature whilst looking at a small subset of shapes in dataset.
机译:选择压缩,健壮和准确的特征是使用图像中对象的形状信息进行基于内容的有效图像识别和检索的基本要素。在本文中,我们提出了一个四阶段的实时目标识别和检索系统,该系统采用轮廓信息进行多特征空间表示。在第一阶段,我们对形状进行预处理,以解决诸如裂纹之类的变形,这些变形会大大扭曲形状的轮廓信息。然后,我们生成形状的多个特征空间表示形式,以供以后在提议的组合中使用,以使用分层索引结构高效而准确地检索形状。为了通过提高效率和减少所提出的形状描述符的存储需求来实现基于图像的实时形状分析,我们提出了一种量化方法来生成形状特征空间表示的词汇。然后将这些特征组合在一起,以在存在大型形状数据集的情况下进行准确有效的形状检索和识别。使用公开可用的形状数据集(例如MPEG 7,Swedish leaf和KIMIA 99数据集)对提出的系统进行了评估。我们的方法实现了更高的精度,优于文献中报道的最新方法,同时查看了数据集中一小部分形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号