首页> 外文期刊>Journal of Real-Time Image Processing >Hybrid multi-GPU computing: accelerated kernels for segmentation and object detection with medical image processing applications
【24h】

Hybrid multi-GPU computing: accelerated kernels for segmentation and object detection with medical image processing applications

机译:混合多GPU计算:用于医学图像处理应用的用于分割和对象检测的加速内核

获取原文
获取原文并翻译 | 示例

摘要

In the last two decades, we have seen an amazing development of image processing techniques targeted for medical applications. We propose multi-GPU-based parallel real-time algorithms for segmentation and shape-based object detection, aiming at accelerating two medical image processing methods: automated blood detection in wireless capsule endoscopy (WCE) images and automated bright lesion detection in retinal fundus images. In the former method we identified segmentation and object detection as being responsible for consuming most of the global processing time. While in the latter, as segmentation was not used, shape-based object detection was the compute-intensive task identified. Experimental results show that the accelerated method running on multi-GPU systems for blood detection in WCE images is on average 265 times faster than the original CPU version and is able to process 344 frames per second. By applying the multi-GPU framework for bright lesion detection in fundus images we are able to process 62 frames per second with a speedup average 667 times faster than the equivalent CPU version.
机译:在过去的二十年中,我们看到了针对医疗应用的图像处理技术的惊人发展。我们提出用于分割和基于形状的对象检测的基于多GPU的并行实时算法,旨在加速两种医学图像处理方法:无线胶囊内窥镜(WCE)图像中的自动血液检测和视网膜眼底图像中的自动明亮病变检测。在前一种方法中,我们将分段和对象检测确定为消耗了大部分全局处理时间的原因。而在后者中,由于未使用分割,因此基于形状的对象检测是确定的计算密集型任务。实验结果表明,在多GPU系统上运行的用于WCE图像中血液检测的加速方法平均比原始CPU版本快265倍,并且能够每秒处理344帧。通过将多GPU框架应用于眼底图像中的明亮病变检测,我们能够每秒处理62帧,平均速度比同等CPU版本快667倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号