首页> 外文OA文献 >GPIS: genetic programming based image segmentation with applications to biomedical object detection
【2h】

GPIS: genetic programming based image segmentation with applications to biomedical object detection

机译:GPIS:基于遗传编程的图像分割及其在生物医学目标检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image segmentation plays a critical role in many image analysis applications. However, it is ill-defined in nature and remains one of the most intractable problems in image processing. In this thesis, we propose a genetic programming based algorithm for image segmentation (GPIS). Typically, genetic programming is a Darwinian-evolution inspired program discovery method and in the past it has been successfully used as an automatic programming tool. We make use of this property of GP to evolve efficient and accurate image segmentation programs from a pool of basic image analysis operators. In addition, we provide no a priori information about that nature of the images to the GP. The algorithm was tested on two separate medical image databases and results show the proposed GP's ability to adapt and produce short and accurate segmentation algorithms, irrespective of the database in use. We compared our results with a popular GA based image segmentation/classification system, GENIE Pro. We found that our proposed algorithm produced accurate image segmentations performed consistently on both databases and could possibly be extended to other image databases as a general-purpose image segmentation tool.
机译:图像分割在许多图像分析应用程序中扮演着至关重要的角色。然而,它本质上是不确定的,并且仍然是图像处理中最棘手的问题之一。本文提出了一种基于遗传程序的图像分割算法。通常,基因编程是达尔文进化论启发的程序发现方法,在过去,它已成功地用作自动编程工具。我们利用GP的这一特性,从一组基本的图像分析运算符中演化出高效,准确的图像分割程序。此外,我们没有向GP提供有关图像性质的先验信息。该算法在两个单独的医学图像数据库上进行了测试,结果表明,无论使用哪种数据库,建议的GP均具有适应并产生简短准确的分割算法的能力。我们将结果与流行的基于GA的图像分割/分类系统GENIE Pro进行了比较。我们发现,我们提出的算法产生了在两个数据库上一致执行的精确图像分割,并且有可能作为通用图像分割工具扩展到其他图像数据库。

著录项

  • 作者

    Dhot Tarundeep Singh;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号