首页> 外文期刊>Journal of Real-Time Image Processing >A multi-agent-based approach for fuzzy clustering of large image data
【24h】

A multi-agent-based approach for fuzzy clustering of large image data

机译:基于多主体的大图像数据模糊聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Data clustering usually requires extensive computations of similarity measures between dataset members and cluster centers, especially for large datasets. Image clustering can be an intermediate process in image retrieval or segmentation, where a fast process is critically required for large image databases. This paper introduces a new approach of multi-agents for fuzzy image clustering (MAFIC) to improve the time cost of the sequential fuzzy -means algorithm (FCM). The approach has the distinguished feature of distributing the computation of cluster centers and membership function among several parallel agents, where each agent works independently on a different sub-image of an image. Based on the Java Agent Development Framework platform, an implementation of MAFIC is tested on 24-bit large size images. The experimental results show that the time performance of MAFIC outperforms that of the sequential FCM algorithm by at least four times, and thus reduces the time needed for the clustering process.
机译:数据聚类通常需要对数据集成员和聚类中心之间的相似性度量进行大量计算,尤其是对于大型数据集。图像聚类可以是图像检索或分割中的中间过程,对于大型图像数据库,关键是需要快速的过程。本文介绍了一种用于模糊图像聚类的多智能体新方法,以提高顺序模糊均值算法的时间成本。该方法具有将群集中心的计算和隶属函数分布在几个并行代理程序中的显着特征,其中每个代理程序在图像的不同子图像上独立工作。基于Java代理开发框架平台,在24位大尺寸图像上测试了MAFIC的实现。实验结果表明,MAFIC的时间性能至少比顺序FCM算法的性能好四倍,从而减少了聚类过程所需的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号