首页> 外文期刊>Journal of Real-Time Image Processing >VLSI implementation of anisotropic probabilistic neural network for real-time image scaling
【24h】

VLSI implementation of anisotropic probabilistic neural network for real-time image scaling

机译:各向异性概率神经网络的VLSI实现实时图像缩放

获取原文
获取原文并翻译 | 示例

摘要

This study proposes an VLSI implementation of anisotropic probabilistic neural network (APNN) for real-time video processing applications. The APNN interpolation method achieves good sharpness enhancement at edge regions and reveals the noise reduction at smooth region. For real-time applications, the APNN interpolation is further implemented with efficient pipelined very-large-scale integration (VLSI) architecture. The VLSI architecture of APNN has a five-layer structure, which is comprised of Euclidian layer, Gaussian layer, weighting layer, summation layer, and division layer. The VLSI implementation outperforms software with the low-loss quality. The experimental results indicate that the performance of VLSI implementation is competent for image interpolation. The presented VLSI implementation of APNN interpolation method can reach 1920x1080 at 30 frames per second (FPS) with a reasonable hardware cost.
机译:这项研究为实时视频处理应用提出了各向异性概率神经网络(APNN)的VLSI实现。 APNN插值方法在边缘区域实现了良好的清晰度增强,并揭示了平滑区域的降噪效果。对于实时应用,APNN插值通过高效的流水线超大规模集成(VLSI)架构进一步实现。 APNN的VLSI体系结构具有五层结构,由欧几里得层,高斯层,加权层,求和层和除法层组成。 VLSI实施具有低损耗质量,胜过软件。实验结果表明,VLSI实现的性能足以胜任图像插值。提出的APNN插值方法的VLSI实现可以以每秒30帧(FPS)的速度达到1920x1080,并且具有合理的硬件成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号