...
首页> 外文期刊>Journal of propulsion and power >Ignition Transients in a Scramjet Engine with Air Throttling Part 1: Nonreacting Flow
【24h】

Ignition Transients in a Scramjet Engine with Air Throttling Part 1: Nonreacting Flow

机译:具有空气节流功能的超燃冲压发动机中的点火瞬变:第1部分:非反应流

获取原文
获取原文并翻译 | 示例
           

摘要

Achieving efficient ignition and stable combustion in a high-speed environment has long been a serious concern in the development of scramjet engines. In the engine startup stage, the low chamber pressure and unsettled fuel-air mixing tend to blow off the flame, even if a flameholding device such as a cavity is employed. The problem may be circumvented by modulating the flow structures in the isolator and combustor through air throttling downstream of the flameholder. In experiments, compressed air is introduced in a controlled manner into the combustor to generate a precombustion shock train in the isolator. The resultant increases in the temperature and pressure of the airstream in the combustor, along with the decrease in the flow velocity, lead to smooth and reliable ignition. The incidentally formed separated flows adjacent to the combustor sidewall improve fuel-air mixing as a result of enhanced flow distortion and increased residence time. Because insufficient reaction heat release often leads to an unstable shock train, and exceedingly large heat release may cause severe flow spillage or even inlet unstart, dynamic optimization of the throttling operation is needed to ensure the creation of flow conditions conducive to efficient ignition. The present work establishes an integrated theoreticalumerical framework, within which the influences of all known effects on the engine ignition transient and flame development are studied systematically. Part 1 of the study focuses on nonreacting flow development and fuel-air mixing under the influence of air throttling.
机译:长期以来,在超燃冲压发动机的开发中,实现高效点火和稳定燃烧一直是一个严重的问题。在发动机启动阶段,即使采用了诸如空腔之类的火焰保持装置,较低的腔室压力和不稳定的燃料-空气混合也会使火焰吹散。可以通过调节火焰保持器下游的空气来调节隔离器和燃烧器中的流动结构,从而解决该问题。在实验中,压缩空气以受控方式引入燃烧室,以在隔离器中产生预燃烧冲击波。结果导致燃烧器中气流的温度和压力增加,并且流速降低,从而导致平稳可靠的点火。由于流动畸变增加和停留时间增加,与燃烧器侧壁相邻的偶然形成的分离流改善了燃料-空气混合。由于反应热释放不足通常会导致不稳定的冲击波,并且过多的热释放可能会导致严重的溢流甚至入口不启动,因此需要动态优化节流操作以确保产生有利于有效点火的流动条件。本工作建立了一个完整的理论/数值框架,在其中系统地研究了所有已知效应对发动机点火瞬变和火焰发展的影响。研究的第1部分重点研究在空气节流的影响下非反应性流动发展和燃料-空气混合。

著录项

  • 来源
    《Journal of propulsion and power》 |2014年第2期|438-448|共11页
  • 作者单位

    Georgia Institute of Technology, Atlanta, Georgia 30332,Department or Mechanical Engineering, Pennsylvania State University;

    Georgia Institute of Technology, Atlanta, Georgia 30332,School of Aerospace Engineering;

    Georgia Institute of Technology, Atlanta, Georgia 30332;

    Georgia Institute of Technology, Atlanta, Georgia 30332,School of Aerospace Engineering;

    Taitech, Inc., Beavercreek, Ohio 45430, 1430 Oak Court, Suite 301;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号