首页> 外文学位 >Ignition transient in an ethylene fueled scramjet engine with air throttling.
【24h】

Ignition transient in an ethylene fueled scramjet engine with air throttling.

机译:具有空气节流功能的乙烯燃料超燃发动机中的点火瞬变。

获取原文
获取原文并翻译 | 示例

摘要

This research focuses on the modeling and simulation of ignition transient and subsequent combustion dynamics in an ethylene fueled supersonic combustion ramjet (scramjet) engine. The primary objectives are: 1) to establish an efficient and accurate numerical framework for the treatment of unsteady flow and flame dynamics in scramjet propulsion systems; and 2) to investigate the effects of transverse air throttling on flow development and fuel-air mixing, and to identify its positive influence on ignition and flameholding in a scramjet combustor; and 3) to construct a detailed study investigating ignition transient to identify underlying essential mechanisms by means of air throttling implementation technique.;A comprehensive numerical study of the combustion dynamics in a scramjet combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties for a multi-component reacting flow. Menter's k-o SST twoequation turbulence model is implemented, as it performs well for shear-layer flows and wall turbulence effects. The governing equations and the associated boundary conditions are solved using a density-based finite-volume approach and four-stage Runge-Kutta scheme to utilize explicit time marching. The code is parallelized using the domain decomposition technique and message passing interface (MPI). The theoretical formulation and numerical scheme is first validated with two test cases including turbulent flow over a flat plat and a two-dimensional oblique shock wave, and then validated with engine test data.;The analysis is first employed to a detailed investigation into the flow development and fuel-air mixing in the scramjet engine for non-reacting flow at Mach 5 flight condition. As the air throttling is implemented to increase the combustor pressure, a series of subsequent oblique shock waves following the fuel injectors is generated to separate the wall boundary layer, and lead to a dramatic increase in the fuel/air mixing. The detailed investigation reveals enhanced fuel-air mixing primarily results from elevated vorticity over combustor and cavity, as well as from increased residence time.;Effort is then expended to study the ignition and subsequent reacting flow in the modeled combustor. The ignition transient and flame development are comprehensively studied to investigate the influence of air throttling implementation on ignition and flameholding. The time history of combustion indicates that the engine model can hardly offer the ignition under the given flight condition in the absence of air throttling, as the ignition of ethylene fuel flow on the cowl surface fails to be initiated. Calculation is then employed to demonstrate the significant flow accommodation induced by air throttling implementation, including subsequent decrease in flow velocity and increases in temperature and pressure in the combustor. Autoignition occurs on the cowl surface due to extended residence time and higher initiate temperature, and results in an intense combustion zone with rapid flame spreading in combustor. Results indicate that the pre-combustion shock train is generated as a result of the combustion-induced pressure rise begins just upstream of the combustor entrance. The pre-combustion shock train at this condition forms a large region of low-momentum/separated flow near the combustor sidewalls. This proved to be an additional source for flameholding with the recessed cavity as primary flameholding support. The predicted combustor performance and flow distributions agree well with experimental measurements.
机译:这项研究的重点是乙烯燃料超音速燃烧冲压发动机(scramjet)发动机的点火瞬变和随后的燃烧动力学的建模和仿真。主要目标是:1)建立有效和准确的数值框架,用于处理超燃冲压发动机推进系统中的非定常流动和火焰动力学; 2)研究横向节流对流动发展和燃料-空气混合的影响,并确定其对超燃式燃烧器的着火和火焰保持的积极影响; 3)通过空气节流实施技术,对点火瞬变进行详细研究,以确定潜在的基本机理。进行了超燃冲压燃烧器燃烧动力学的综合数值研究。该分析从三个方面处理了守恒方程,并考虑了有限速率的化学反应和多组分反应流的可变热物理性质。实施了Menter的k-o SST双方程湍流模型,因为它在剪切层流动和壁湍流效应方面表现出色。使用基于密度的有限体积方法和四阶段Runge-Kutta方案利用显式时间行进来求解控制方程和相关的边界条件。使用域分解技术和消息传递接口(MPI)对代码进行并行化。首先通过两个试验案例验证了理论公式和数值方案,包括平板上的湍流和二维倾斜冲击波,然后利用发动机测试数据进行了验证;该分析首先用于对流动进行详细研究超速喷气发动机中的无气流量开发和超燃发动机的燃油-空气混合。当实施空气节流以增加燃烧室压力时,在燃料喷射器之后产​​生一系列随后的倾斜冲击波,以分离壁边界层,并导致燃料/空气混合的急剧增加。详细的研究表明,增强的燃料-空气混合主要是由于燃烧室和空腔上方的涡流增加以及停留时间增加所致;然后,人们努力研究模型化燃烧室中的点火和随后的反应流。全面研究了点火瞬变和火焰的发展,以研究空气节流措施对点火和火焰保持的影响。燃烧的时间历史表明,在没有空气节流的情况下,发动机模型很难在给定的飞行条件下提供点火,因为前围板上的乙烯燃料流的点火未能启动。然后采用计算来证明通过节流空气实现的显着流量调节,包括随后流速降低以及燃烧室中温度和压力的升高。由于延长的停留时间和较高的起始温度,在前罩表面上发生自燃,并导致强烈的燃烧区,燃烧室中火焰迅速扩散。结果表明,由于燃烧引起的压力上升正好在燃烧室入口的上游开始,因此产生了燃烧前冲击波。在这种条件下的预燃烧冲击波在燃烧器侧壁附近形成大的低动量/分离流区域。事实证明,这是将凹腔作为主要火焰保持支架的另一种火焰保持来源。预测的燃烧器性能和流量分布与实验测量结果非常吻合。

著录项

  • 作者

    Li, Jian.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号