首页> 外文期刊>Journal of Pipeline Systems Engineering and Practice >Gene-Expression Programming, Evolutionary Polynomial Regression, and Model Tree to Evaluate Local Scour Depth at Culvert Outlets
【24h】

Gene-Expression Programming, Evolutionary Polynomial Regression, and Model Tree to Evaluate Local Scour Depth at Culvert Outlets

机译:基因表达编程,进化多项式回归和模型树,以评估巫师网点的局部冲刷深度

获取原文
获取原文并翻译 | 示例

摘要

Protection of the downstream of culvert outlets against scour process, as a water conveyance structure, is a highly significant issue in design of culverts. Frequent field and experimental investigations were carried out to produce a relationship between the scour depth due to the governing variables. However, existing empirical equations do not always provide a precise estimation of the scour depth due to the complexity of the scour phenomena. In this investigation, gene-expression programming (GEP), model tree (MT), and evolutionary polynomial regression (EPR) are utilized to predict the scour depth downstream of culvert outlets. Input variables-considering effective parameters on the scour depth-were defined as sediment size at downstream, geometry of culvert outlets, and flow characteristics in upstream and downstream. Experimental datasets to develop the models were collected from different literature. Performances of the proposed models for the training and testing phases were assessed using several statistical measures. Results of performances indicated that EPR provided the lowest level of precision including index of agreement (IOA=0.958) and root mean squared error (RMSE=0.419) for prediction of local scour depth at culvert outlets than those obtained using MT (IOA=0.947 and RMSE=0.471) and GEP (IOA=0.943 and RMSE=0.487). In terms of accuracy, all proposed equations extracted from artificial intelligence approaches had remarkable superiority to the traditional equations. Ultimately, it has been proven that mathematical expressions given by evolutionary computing tools had sufficient generalization to present an accurate prediction of the local scour depth with respect to preserving physical meaning of results.
机译:保护涵洞出口的下游防止冲刷过程,作为水传输结构,是涵洞设计中的一个非常重要的问题。进行频繁的场和实验研究,以产生由于控制变量因控制变量而产生的冲刷深度之间的关系。然而,由于冲刷现象的复杂性,现有的经验方程并不总是提供对冲刷深度的精确估计。在该研究中,利用基因表达编程(GEP),模型树(MT)和进化多项式回归(EPR)来预测涵洞出口下游的冲刷深度。输入变量 - 考虑冲刷深度的有效参数 - 被定义为下游的沉积物大小,抑郁症出口的几何形状,以及上游和下游的流量特性。从不同的文献中收集了开发模型的实验数据集。使用几种统计措施评估培训和测试阶段的拟议模型的表演。表演结果表明,EPR提供了包括协议索引(IOA = 0.958)和根均方误差(RMSE = 0.419)的最低精度,用于预测巫位出口处的局部冲刷深度(IOA = 0.947 RMSE = 0.471)和GEP(IOA = 0.943和RMSE = 0.487)。在准确性方面,从人工智能方法中提取的所有提出方程都对传统方程具有显着的优势。最终,已经证明了进化计算工具给出的数学表达式具有足够的概括,以呈现关于保留结果的物理含义的局部冲刷深度的精确预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号