首页> 外文期刊>Journal of Parallel and Distributed Computing >A-GHSOM: An adaptive growing hierarchical self organizing map for network anomaly detection
【24h】

A-GHSOM: An adaptive growing hierarchical self organizing map for network anomaly detection

机译:A-GHSOM:用于网络异常检测的自适应增长分层自组织图

获取原文
获取原文并翻译 | 示例

摘要

The growing hierarchical self organizing map (GHSOM) has been shown to be an effective technique to facilitate anomaly detection. However, existing approaches based on GHSOM are not able to adapt online to the ever-changing anomaly detection. This results in low accuracy in identifying intrusions, particularly "unknown" attacks. In this paper, we propose an adaptive GHSOM based approach (A-GHSOM) to network anomaly detection. It consists of four significant enhancements: enhanced threshold-based training, dynamic input normalization, feedback-based quantization error threshold adaptation, and prediction confidence filtering and forwarding. We first evaluate the A-GHSOM approach for intrusion detection using the KDD'99 dataset. Extensive experimental results demonstrate that compared with eight representative intrusion detection approaches, A-GHSOM achieves significant overall accuracy improvement and significant improvement in identifying "unknown" attacks while maintaining low false-positive rates. It achieves an overall accuracy of 99.63%, and 94.04% accuracy in identifying "unknown" attacks while the false positive rate is 1.8%. To avoid drawing research results and conclusions solely based on experiments with the KDD dataset, we have also built a dataset (TD-Sim) that consists of a mixture of live trace data from the Lawrence Berkeley National Laboratory and simulated traffic based on our testbed network, ensuring adequate coverage of a variety of attacks. Performance evaluation with the TD-Sim dataset shows that A-GHSOM adapts to live traffic and achieves an overall accuracy rate of 97.12% while maintaining the false positive rate of 2.6%.
机译:越来越多的分层自组织图(GHSOM)已被证明是促进异常检测的有效技术。但是,基于GHSOM的现有方法无法在线适应不断变化的异常检测。这导致识别入侵(尤其是“未知”攻击)的准确性较低。在本文中,我们提出了一种基于自适应GHSOM的方法(A-GHSOM)来进行网络异常检测。它包含四个重要的增强功能:增强的基于阈值的训练,动态输入归一化,基于反馈的量化误差阈值自适应以及预测置信度过滤和转发。我们首先评估使用KDD'99数据集进行入侵检测的A-GHSOM方法。大量的实验结果表明,与八种代表性的入侵检测方法相比,A-GHSOM在保持较低的假阳性率的同时,在识别“未知”攻击方面实现了显着的整体准确性提高和显着提高。它的整体准确度达到99.63%,识别“未知”攻击的准确度达到94.04%,而误报率为1.8%。为了避免仅根据KDD数据集的实验得出研究结果和结论,我们还建立了一个数据集(TD-Sim),该数据集包含了劳伦斯伯克利国家实验室的实时跟踪数据和基于我们测试平台网络的模拟流量,确保充分涵盖各种攻击。使用TD-Sim数据集进行的性能评估表明,A-GHSOM可以适应实时流量,并在保持2.6%的误报率的同时,达到97.12%的总体准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号