首页> 外文期刊>Journal of Parallel and Distributed Computing >Communication and cooling aware job allocation in data centers for communication-intensive workloads
【24h】

Communication and cooling aware job allocation in data centers for communication-intensive workloads

机译:数据中心中具有通信和散热意识的作业分配,用于通信密集型工作负载

获取原文
获取原文并翻译 | 示例

摘要

Energy consumption is an increasingly important concern in data centers. Today, nearly half of the energy in data centers is consumed by the cooling infrastructure. Existing policies on thermally-aware workload allocation do not consider applications that include many tasks (or threads) running on a large set of nodes with significant communication among the tasks. Such jobs, however, constitute most of the cycles in high performance computing (HPC) domain, and have started to appear in other data centers as well. Job allocation strongly affects the performance of such communication-intensive applications. Communication-aware job allocation methods exist, but they focus solely on performance and do not consider cooling energy. This paper proposes a novel job allocation methodology to jointly minimize communication cost and cooling energy consumption in data centers. We formulate and solve the joint optimization problem using binary quadratic programming. Our joint optimization algorithm reduces cooling energy by 16.4% on average with only a 2.66% average increase in application running time compared to solely performance-aware allocations. To further optimize the communication cost, we develop a Charm++ based framework that extracts the communication behavior of applications. We then integrate our job allocation policy with recursive coordinate bisection (RCB) based task mapping method to place highly-communicating tasks in close proximity. Experimental results show that task mapping further decreases the communication cost by up to 20.9% compared to assuming all-to-all communication, a popular assumption in much of the prior work.
机译:能耗是数据中心中日益重要的关注点。如今,冷却基础设施消耗了数据中心近一半的能源。现有的有关热感知工作负载分配的策略不考虑包含许多任务(或线程)的应用程序,这些应用程序在大量节点上运行且任务之间存在大量通信。但是,此类作业构成了高性能计算(HPC)域中的大部分周期,并且也开始出现在其他数据中心中。作业分配极大地影响了此类通信密集型应用程序的性能。存在通信意识的作业分配方法,但它们仅关注性能,不考虑冷却能量。本文提出了一种新颖的工作分配方法,以共同最小化数据中心的通信成本和冷却能耗。我们使用二进制二次规划来制定和解决联合优化问题。与仅基于性能的分配相比,我们的联合优化算法平均将冷却能量减少了16.4%,而应用程序运行时间仅平均增加了2.66%。为了进一步优化通信成本,我们开发了一个基于Charm ++的框架,该框架提取了应用程序的通信行为。然后,我们将工作分配策略与基于递归坐标对分(RCB)的任务映射方法相集成,以将高度通信的任务紧密放置在一起。实验结果表明,与假设所有通信相比,任务映射还可以将通信成本进一步降低20.9%,这是许多先前工作中普遍采用的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号