首页> 外文期刊>Journal of Parallel and Distributed Computing >Reducing memory usage by the lifting-based discrete wavelet transform with a unified buffer on a GPU
【24h】

Reducing memory usage by the lifting-based discrete wavelet transform with a unified buffer on a GPU

机译:通过基于提升的离散小波变换和GPU上的统一缓冲区来减少内存使用

获取原文
获取原文并翻译 | 示例

摘要

In this study, to improve the speed of the lifting-based discrete wavelet transform (DWT) for large-scale data, we propose a parallel method that achieves low memory usage and highly efficient memory access on a graphics processing unit (GPU). The proposed method reduces the memory usage by unifying the input buffer and output buffer but at the cost of a working memory region that is smaller than the data size n. The method partitions the input data into small chunks, which are then rearranged into groups so different groups of chunks can be processed in parallel. This data rearrangement scheme classifies chunks in terms of data dependency but it also facilitates transformation via simultaneous access to contiguous memory regions, which can be handled efficiently by the GPU. In addition, this data rearrangement is interpreted as a product of circular permutations such that a sequence of seeds, which is an order of magnitude shorter than input data, allows the GPU threads to compute the complicated memory indexes needed for parallel rearrangement. Because the DWT is usually part of a processing pipeline in an application, we believe that the proposed method is useful for retaining the amount of memory for use by other pipeline stages.
机译:在这项研究中,为了提高针对大规模数据的基于提升的离散小波变换(DWT)的速度,我们提出了一种并行方法,该方法可在图形处理单元(GPU)上实现低内存使用率和高效内存访问。所提出的方法通过统一输入缓冲器和输出缓冲器来减少存储器使用量,但是以小于数据大小n的工作存储器区域为代价。该方法将输入数据划分为小块,然后将其重新排列为组,以便可以并行处理不同的组块。这种数据重排方案根据数据依赖性对块进行了分类,但它也通过同时访问连续的内存区域(可以由GPU有效处理)来促进转换。此外,此数据重排被解释为循环排列的乘积,因此种子序列(比输入数据短一个数量级)允许GPU线程计算并行重排所需的复杂内存索引。由于DWT通常是应用程序中处理流水线的一部分,因此我们认为所提出的方法对于保留供其他流水线级使用的内存量很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号