首页> 外文期刊>Journal of Parallel and Distributed Computing >A hybrid computing method of SpMV on CPU-GPU heterogeneous computing systems
【24h】

A hybrid computing method of SpMV on CPU-GPU heterogeneous computing systems

机译:SpMV在CPU-GPU异构计算系统上的混合计算方法

获取原文
获取原文并翻译 | 示例

摘要

Sparse matrix-vector multiplication (SpMV) is an important issue in scientific computing and engineering applications. The performance of SpMV can be improved using parallel computing. The implementation and optimization of SpMV on GPU are research hotspots. Due to some irregularities of sparse matrices, the use of a single compression format is not satisfactory. The hybrid storage format can expand the range of adaptation of the compression algorithms. However, because of the imbalance of non-zero elements, the parallel computing capability of a GPU cannot be fully utilized. The parallel computing capability of a CPU is also rising due to increased number of cores in CPU. However, when a GPU is computing, the CPU controls the process instead of contributing to the computational work. It leads to under-utilization of the computing power of CPU. Due to the characteristics of the sparse matrices, the data can be split into two parts using the hybrid storage format to be allocated to CPU and GPU for simultaneous computing. In order to take full advantage of computing resources of CPU and GPU, the CPU-GPU heterogeneous computing model is adopted in this paper to improve the performance of SpMV. With analysis of the characteristics of CPU and GPU, an optimization strategy of sparse matrix partitioning using a distribution function is proposed to improve the computing performance of SpMV on the heterogeneous computing platform. The experimental results on two test machines demonstrate noticeable performance improvement.
机译:稀疏矩阵向量乘法(SpMV)是科学计算和工程应用中的重要问题。使用并行计算可以提高SpMV的性能。 SpMV在GPU上的实现和优化是研究热点。由于稀疏矩阵的某些不规则性,使用单一压缩格式并不令人满意。混合存储格式可以扩展压缩算法的适应范围。然而,由于非零元素的不平衡,因此无法充分利用GPU的并行计算能力。由于CPU中内核数量的增加,CPU的并行计算能力也在提高。但是,当GPU正在计算时,CPU会控制该过程,而不是参与计算工作。这会导致CPU的计算能力利用不足。由于稀疏矩阵的特性,可以使用混合存储格式将数据分为两部分,分配给CPU和GPU进行同步计算。为了充分利用CPU和GPU的计算资源,本文采用了CPU-GPU异构计算模型来提高SpMV的性能。通过分析CPU和GPU的特性,提出一种利用分布函数的稀疏矩阵分区优化策略,以提高SpMV在异构计算平台上的计算性能。在两台测试机上的实验结果证明了性能的显着提高。

著录项

  • 来源
  • 作者单位

    College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410008, China ,College of Information Science and Engineering, Hunan City University, Yiyang, Hunan 413000, China;

    College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410008, China ,The National Supercomputing Center in Changsha, Hunan University, Hunan 410008, China;

    College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410008, China ,Department of Computer Science, State University of New York, New Paltz, NY 12561, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heterogeneous computing; Hybrid storage format; Partition; Sparse matrix-vector multiplication;

    机译:异构计算;混合存储格式;划分;稀疏矩阵向量乘法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号