首页> 外文期刊>Journal of Parallel and Distributed Computing >EPLS: A novel feature extraction method for migration data clustering
【24h】

EPLS: A novel feature extraction method for migration data clustering

机译:EPLS:一种用于迁移数据聚类的新颖特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

Nowadays human activity data such as migration data can be easily accumulated by personal devices thanks for GPS. Analysis on migration data is very useful for society decision. Migration data as non-line time series have the properties of higher noise and outliers. Traditional feature extraction methods cannot address this issue very well because of inherent characteristics. Aiming at this problem, a novel numerical feature extraction approach EPLS is proposed. It is an integration of the Ensemble Empirical Mode (EEMD), Principal Component Analysis (PCA) and Least Square (LS) method. The EPLS model includes (1) Mode Decomposition in which EEMD algorithm is applied to the aggregation dataset; (2) Dimension Reduction is carried out for a more significant set of vectors; (3) Least Squares Projection in which all testing data are projected to the obtained vectors. Experimental results show that EPLS can overcome the higher noise and outliers based on migration data clustering. Meanwhile, EPLS feature extraction method can achieve high performance compared with several different clustering methods and distance measures.
机译:如今,借助GPS,个人设备可以轻松地收集诸如迁移数据之类的人类活动数据。迁移数据分析对于社会决策非常有用。非线性时间序列的迁移数据具有较高的噪声和离群值。由于固有的特性,传统的特征提取方法不能很好地解决这个问题。针对该问题,提出了一种新的数值特征提取方法EPLS。它是集成经验模式(EEMD),主成分分析(PCA)和最小二乘(LS)方法的集成。 EPLS模型包括:(1)模式分解,其中将EEMD算法应用于聚合数据集; (2)对更重要的向量集进行降维; (3)最小二乘投影,其中所有测试数据都投影到获得的矢量上。实验结果表明,基于迁移数据聚类,EPLS可以克服较高的噪声和离群值。同时,与几种不同的聚类方法和距离度量相比,EPLS特征提取方法可以实现高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号