首页> 外文期刊>Journal of Parallel and Distributed Computing >Prediction of human protein subcellular localization using deep learning
【24h】

Prediction of human protein subcellular localization using deep learning

机译:使用深度学习预测人类蛋白质亚细胞定位

获取原文
获取原文并翻译 | 示例

摘要

Protein subcellular localization (PSL), as one of the most critical characteristics of human cells, plays an important role for understanding specific functions and biological processes in cells. Accurate prediction of protein subcellular localization is a fundamental and challenging problem, for which machine learning algorithms have been widely used. Traditionally, the performance of PSL prediction highly depends on handcrafted feature descriptors to represent proteins. In recent years, deep learning has emerged as a hot research topic in the field of machine learning, achieving outstanding success in learning high-level latent features within data samples. In this paper, to accurately predict protein subcellular locations, we propose a deep learning based predictor called DeepPSL by using Stacked Auto-Encoder (SAE) networks. In this predictor, we automatically learn high-level and abstract feature representations of proteins by exploring non-linear relations among diverse subcellular locations, addressing the problem of the need of handcrafted feature representations. Experimental results evaluated with three-fold cross validation show that the proposed DeepPSL outperforms traditional machine learning based methods. It is expected that DeepPSL, as the first predictor in the field of PSL prediction, has great potential to be a powerful computational method complementary to existing tools.
机译:蛋白质亚细胞定位(PSL)作为人类细胞的最关键特征之一,在理解细胞中的特定功能和生物学过程中起着重要作用。蛋白质亚细胞定位的准确预测是一个基本的且具有挑战性的问题,机器学习算法已被广泛使用。传统上,PSL预测的性能高度依赖于代表蛋白质的手工特征描述符。近年来,深度学习已成为机器学习领域的热门研究主题,在学习数据样本中的高级潜在特征方面取得了出色的成功。在本文中,为了准确预测蛋白质亚细胞的位置,我们提出了一种基于深度学习的预测器,称为DeepPSL,它是通过使用堆叠自动编码器(SAE)网络来实现的。在这种预测变量中,我们通过探索不同亚细胞位置之间的非线性关系来自动学习蛋白质的高级和抽象特征表示,从而解决了需要手工制作特征表示的问题。通过三重交叉验证评估的实验结果表明,拟议的DeepPSL优于传统的基于机器学习的方法。可以预期,DeepPSL作为PSL预测领域中的第一个预测器,具有很大的潜力,可以成为替代现有工具的强大计算方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号