首页> 外文期刊>Journal of Parallel and Distributed Computing >WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system
【24h】

WP-SGD: Weighted parallel SGD for distributed unbalanced-workload training system

机译:WP-SGD:分布式不平衡工作负载训练系统的加权并行SGD

获取原文
获取原文并翻译 | 示例

摘要

Stochastic gradient descent (SGD) is a popular stochastic optimization method in machine learning. Traditional parallel SGD algorithms, e.g., SimuParallel SGD (Zinkevich, 2010), often require all nodes to have the same performance or to consume equal quantities of data. However, these requirements are difficult to satisfy when the parallel SGD algorithms run in a heterogeneous computing environment; low-performance nodes will exert a negative influence on the final result. In this paper, we propose an algorithm called weighted parallel SGD (WP-SGD). WP-SGD combines weighted model parameters from different nodes in the system to produce the final output. WP-SGD makes use of the reduction in standard deviation to compensate for the loss from the inconsistency in performance of nodes in the cluster, which means that WP-SGD does not require that all nodes consume equal quantities of data. We also propose the methods of running two other parallel SGD algorithms combined with WP-SGD in a heterogeneous environment. The experimental results show that WP-SGD significantly outperforms the traditional parallel SGD algorithms on distributed training systems with an unbalanced workload.
机译:随机梯度下降(SGD)是机器学习中的流行随机优化方法。传统的并行SGD算法,例如Simuparelallel SGD(Zinkevich,2010),通常需要所有节点具有相同的性能或消耗等量的数据。然而,当在异构计算环境中运行并行SGD算法时,这些要求难以满足;低性能节点将对最终结果产生负面影响。在本文中,我们提出了一种称重并行SGD(WP-SGD)的算法。 WP-SGD将加权模型参数与系统中的不同节点组合以产生最终输出。 WP-SGD利用标准偏差的减少来补偿群集中节点性能不一致的损失,这意味着WP-SGD不要求所有节点消耗相等数量的数据。我们还提出了在异构环境中运行另外两个并行SGD算法的方法与WP-SGD相结合。实验结果表明,WP-SGD在具有不平衡工作量的分布式训练系统上显着优于传统的并行SGD算法。

著录项

  • 来源
    《Journal of Parallel and Distributed Computing》 |2020年第11期|202-216|共15页
  • 作者单位

    SKL of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China;

    SKL of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China Department of Computer Science ETH Zurich Switzerland;

    SKL of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SGD; Unbalanced workload; SimuParallel SGD; Distributed system;

    机译:SGD;工作量不平衡;Simuparallel SGD;分布式系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号