首页> 外文期刊>Computers & operations research >Parallel machine scheduling with the total weighted delivery time performance measure in distributed manufacturing
【24h】

Parallel machine scheduling with the total weighted delivery time performance measure in distributed manufacturing

机译:并行机器调度随着分布式制造中的总加权交货时间性能测量

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address a parallel machine scheduling problem that is motivated by distributed manufacturing settings. Our objective is to minimize the total weighted delivery time (TWD) after including delivery durations for the jobs. We first analyse several special cases which can be solved to optimality in polynomial time. Based on the gained insights of the analysis, constructive algorithms are proposed for the general problem setting. A greedy randomized adaptive search (GRASP) framework is proposed to guide the subordinate heuristics to further improve algorithm performance for large-sized problem instances. Computational experiments based on randomly generated problem instances are carried out. They demonstrate that the GRASP computes competitive schedules for the special cases. For small problem instances, the GRASP is able to compute optimal solutions. Moreover, it outperforms two genetic algorithms (GAs) that differ in the way how structural properties of optimal solutions are included in terms of both solution quality and computing time. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在本文中,我们解决了一个并行机器调度问题,该问题是通过分布式制造设置的激励。我们的目标是最大限度地减少总加权交付时间(TWD),包括职能持续时间。我们首先分析几种特殊情况,可以解决多项式时间中的最优性。基于对分析的获得洞察,提出了构造算法,用于一般问题设置。提出了一种贪婪的随机自适应搜索(掌握)框架,以指导从属启发式方法进一步提高大型问题实例的算法性能。执行基于随机产生的问题实例的计算实验。他们证明掌握计算特殊情况的竞争时间表。对于小问题实例,掌握能够计算最佳解决方案。此外,它优于两种遗传算法(气体),这些算法(气体)在溶液质量和计算时间方面包括最佳解决方案的结构性质。 (c)2020 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号