首页> 外文期刊>Journal of Parallel and Distributed Computing >Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs
【24h】

Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs

机译:通过对多核CPU的并行自适应策略进行动态k均值算法的性能增强

获取原文
获取原文并翻译 | 示例

摘要

The K-means algorithm is one of the most popular algorithms in Data Science, and it is aimed to discover similarities among the elements belonging to large datasets, partitioning them in K distinct groups called clusters. The main weakness of this technique is that, in real problems, it is often impossible to define the value of K as input data. Furthermore, the large amount of data used for useful simulations makes impracticable the execution of the algorithm on traditional architectures. In this paper, we address the previous two issues. On the one hand, we propose a method to dynamically define the value of K by optimizing a suitable quality index with special care to the computational cost. On the other hand, to improve the performance and the effectiveness of the algorithm, we propose a strategy for parallel implementation on modern multicore CPUs.
机译:K-means算法是数据科学中最受欢迎的算法之一,旨在发现属于大型数据集的元素之间的相似性,以称为集群的K个不同组分区。这种技术的主要弱点是,在实际问题中,通常不可能将k值定义为输入数据。此外,用于有用仿真的大量数据使得在传统架构上的算法执行不切实际。在本文中,我们解决了前两个问题。一方面,我们提出了一种方法来动态地定义K的值,通过优化合适的质量指数,特别注意计算成本。另一方面,为了提高算法的性能和有效性,我们提出了一种在现代多核CPU上并行实现的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号