首页> 外文期刊>Journal of Parallel and Distributed Computing >Towards a real-time production of immersive spatial audio of high individuality with an RBF neural network
【24h】

Towards a real-time production of immersive spatial audio of high individuality with an RBF neural network

机译:利用RBF神经网络实时生产高性性的沉浸式空间音频

获取原文
获取原文并翻译 | 示例

摘要

Immersion perception plays a critical role in the tremendous success of the recent development of augment/virtual reality applications, in which high-quality spatial audio is mandatory. However, because of the high individuality of numerous anthropometric parameters in connection with listeners, deriving the proper acoustic perturbation characteristics in the process of producing immersive spatial audio via loudspeakers, in which speed and precision are both important, has long been a research challenge. This study first adopts gain vectors for loudspeakers (GVL) to represent the acoustic perturbations, which are sensitive to both the frequency bands and the anthropometric parameters of an individual. The radial base function neural network then maps the parameter sets to the corresponding GVLs. A parallel convolution algorithm guides the GVLs to convolve with the source signals, and the outputs drive the loudspeakers to produce the designated spatial audio of high individuality. Experimental results indicate the following: (1) the binaural cues deviation decrease by 12.21% on average, and the subjective score of the listener increases by 27.24%, and (2) the ratio of time consumed by parallel convolution based on six threads to a general convolution is 0.373, demonstrating that immersive spatial audio of high individuality can be produced in real time. (C) 2019 Elsevier Inc. All rights reserved.
机译:浸入感知在增强/虚拟现实应用的最近发展的巨大成功中起着关键作用,其中高质量的空间音频是强制性的。然而,由于与听众有关的许多人类测量参数的高性性,在通过扬声器产生沉浸式空间音频的过程中导出适当的声学扰动特性,其中速度和精度都很重要,长期以来一直是研究挑战。本研究首先采用增益向量来表示扬声器(GVL)来表示声学扰动,其对个体的频带和人类测量参数敏感。然后径向基本功能神经网络将参数集映射到相应的GVL。并行卷积算法指导GVL与源信号卷积,输出驱动扬声器以产生高个性的指定空间音频。实验结果表明以下:(1)平均双耳偏差减少12.21%,听众的主观评分增加27.24%,并基于六个线程对并行卷积所消耗的时间与a一般卷积为0.373,表明可以实时生产高个性的沉浸式空间音频。 (c)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Journal of Parallel and Distributed Computing》 |2019年第9期|120-129|共10页
  • 作者单位

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan 430072 Hubei Peoples R China|Wuhan Univ Hubei Key Lab Multimedia & Network Commun Engn Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan 430072 Hubei Peoples R China|Wuhan Univ Hubei Key Lab Multimedia & Network Commun Engn Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Natl Engn Res Ctr Multimedia Software Sch Comp Sci Wuhan 430072 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spatial audio; Virtual sound; Vector-based amplitude panning; Radial base function neural network; Parallel convolution;

    机译:空间音频;虚拟声音;基于矢量的幅度平移;径向基本功能神经网络;并行卷积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号