首页> 外文期刊>Journal of Parallel and Distributed Computing >Fast neural network training on a cluster of GPUs for action recognition with high accuracy
【24h】

Fast neural network training on a cluster of GPUs for action recognition with high accuracy

机译:在GPU集群上进行快速神经网络训练,以高精度进行动作识别

获取原文
获取原文并翻译 | 示例

摘要

We propose algorithms and techniques to accelerate training of deep neural networks for action recognition on a cluster of GPUs. The convergence analysis of our algorithm shows it is possible to reduce communication cost and at the same time minimize the number of iterations needed for convergence. We customize the Adam optimizer for our distributed algorithm to improve efficiency. In addition, we employ transfer-learning to further reduce training time while improving validation accuracy. For the UCF101 and HMDB51 datasets, the validation accuracies achieved are 93.1% and 67.9% respectively. With an additional end-to-end trained temporal stream, the validation accuracies achieved for UCF101 and HMDB51 are 93.47% and 81.24% respectively. As far as we know, these are the highest accuracies achieved with the two-stream approach using ResNet that does not involve computationally expensive 3D convolutions or pretraining on much larger datasets. (C) 2019 Elsevier Inc. All rights reserved.
机译:我们提出了用于加速深度神经网络训练的算法和技术,以用于在GPU集群上进行动作识别。我们算法的收敛分析表明,可以降低通信成本,同时将收敛所需的迭代次数降至最低。我们为分布式算法自定义Adam优化器,以提高效率。此外,我们采用转移学习来进一步减少培训时间,同时提高验证准确性。对于UCF101和HMDB51数据集,实现的验证准确度分别为93.1%和67.9%。使用额外的端到端训练的时间流,UCF101和HMDB51的验证精度分别为93.47%和81.24%。据我们所知,这是使用ResNet的两流方法所实现的最高精度,它不涉及计算上昂贵的3D卷积或对更大数据集的预训练。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号