首页> 外文期刊>Journal of Parallel and Distributed Computing >Malicious code detection based on CNNs and multi-objective algorithm
【24h】

Malicious code detection based on CNNs and multi-objective algorithm

机译:基于CNN和多目标算法的恶意代码检测

获取原文
获取原文并翻译 | 示例

摘要

An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper proposes a method to advance the detection of malicious code using convolutional neural networks (CNNs) and intelligence algorithm. The CNNs are used to identify and classify grayscale images converted from executable files of malicious code. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is then employed to deal with the data imbalance of malware families. A series of experiments are designed for malware image data from Vision Research Lab. The experimental results demonstrate that the proposed method is effective, maintaining higher accuracy and less loss. (C) 2019 Elsevier Inc. All rights reserved.
机译:越来越多的恶意代码通过威胁用户隐私作为网络安全漏洞的主要来源之一,对互联网造成损害。对恶意代码的检测变得越来越重要,并且当前的检测方法需要大量改进。本文提出了一种利用卷积神经网络(CNN)和智能算法来推进恶意代码检测的方法。 CNN用于识别和分类从恶意代码的可执行文件转换而来的灰度图像。然后,采用非支配排序遗传算法II(NSGA-II)来处理恶意软件家族的数据不平衡问题。针对Vision Research Lab的恶意软件图像数据设计了一系列实验。实验结果表明,该方法是有效的,可以保持较高的准确度和较少的损失。 (C)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    TaiYuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China;

    TaiYuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China;

    TaiYuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China;

    TaiYuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China;

    Chinese Acad Sci, Inst Automat, State Key Lab Intelligent Control & Management Co, Beijing 100190, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Malicious code; Deep learning; CNN; Imbalance data; NSGA-II;

    机译:恶意代码;深度学习;CNN;失衡数据;NSGA-II;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号