首页> 外文期刊>Journal of Parallel and Distributed Computing >Malicious code detection based on CNNs and multi-objective algorithm
【24h】

Malicious code detection based on CNNs and multi-objective algorithm

机译:基于CNN和多目标算法的恶意代码检测

获取原文
获取原文并翻译 | 示例

摘要

An increasing amount of malicious code causes harm on the internet by threatening user privacy as one of the primary sources of network security vulnerabilities. The detection of malicious code is becoming increasingly crucial, and current methods of detection require much improvement. This paper proposes a method to advance the detection of malicious code using convolutional neural networks (CNNs) and intelligence algorithm. The CNNs are used to identify and classify grayscale images converted from executable files of malicious code. Non-dominated Sorting Genetic Algorithm II (NSGA-II) is then employed to deal with the data imbalance of malware families. A series of experiments are designed for malware image data from Vision Research Lab. The experimental results demonstrate that the proposed method is effective, maintaining higher accuracy and less loss. (C) 2019 Elsevier Inc. All rights reserved.
机译:越来越多的恶意代码通过威胁用户隐私作为网络安全漏洞的主要来源之一导致互联网造成伤害。检测恶意代码变得越来越重要,目前的检测方法需要更大的改进。本文提出了一种使用卷积神经网络(CNNS)和智能算法来推进恶意代码的方法。 CNNS用于识别和分类从恶意代码的可执行文件转换的灰度图像。然后采用非主导的分类遗传算法II(NSGA-II)来处理恶意软件系列的数据不平衡。一系列实验是针对视觉研究实验室的恶意软件图像数据设计的。实验结果表明,该方法有效,维持更高的准确性和更少的损失。 (c)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    TaiYuan Univ Sci & Technol Complex Syst & Computat Intelligence Lab Taiyuan 030024 Shanxi Peoples R China;

    TaiYuan Univ Sci & Technol Complex Syst & Computat Intelligence Lab Taiyuan 030024 Shanxi Peoples R China;

    TaiYuan Univ Sci & Technol Complex Syst & Computat Intelligence Lab Taiyuan 030024 Shanxi Peoples R China;

    TaiYuan Univ Sci & Technol Complex Syst & Computat Intelligence Lab Taiyuan 030024 Shanxi Peoples R China;

    Chinese Acad Sci Inst Automat State Key Lab Intelligent Control & Management Co Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Malicious code; Deep learning; CNN; Imbalance data; NSGA-II;

    机译:恶意代码;深入学习;CNN;不平衡数据;NSGA-II;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号